
Lecture #07: Tree Indexes I
15-445/645 Database Systems (Fall 2020)

https://15445.courses.cs.cmu.edu/fall2020/
Carnegie Mellon University

Prof. Andy Pavlo

1 Table Indexes
There are a number of different data structures one can use inside of a database system for purposes such as
internal meta-data, core data storage, temporary data structures, or table indexes. For table indexes, which
may involve queries with range scans,

A table index is a replica of a subset of a table’s columns that is organized and/or sorted for efficient access
using a subset of those attributes. So instead of performing a sequential scan, the DBMS can lookup the
table index’s auxiliary data structure to find tuples more quickly. The DBMS ensures that the contents of
the tables and the indexes are always logically in sync.

There exists a trade-off between the number of indexes to create per database. Although more indexes makes
looking up queries faster, indexes also use storage and require maintenance. It is the DBMS’s job to figure
out the best indexes to use to execute queries.

2 B+Tree
A B+Tree is a self-balancing tree data structure that keeps data sorted and allows searches, sequential access,
insertion, and deletions in O(log(n)). It is optimized for disk-oriented DBMS’s that read/write large blocks
of data.

Almost every modern DBMS that supports order-preserving indexes uses a B+Tree. There is a specific data
structure called a B-Tree, but people also use the term to generally refer to a class of data structures. The
primary difference between the original B-Tree and the B+Tree is that B-Trees stores keys and values in all
nodes, while B+ trees store values only in leaf nodes. Modern B+Tree implementations combine features
from other B-Tree variants, such as the sibling pointers used in the Blink-Tree.

<5 <9 ≥9

Inner Node

<value>|<key>
Sibling Pointers

6 7 9 131 3

5 9<node*>|<key>

Figure 1: B+ Tree diagram

Formally, a B+Tree is an M -way search tree with the following properties:

https://15445.courses.cs.cmu.edu/fall2020/
https://15445.courses.cs.cmu.edu/fall2020/
http://www.cs.cmu.edu/~pavlo/


Fall 2020 – Lecture #07 Tree Indexes I

• It is perfectly balanced (i.e., every leaf node is at the same depth).
• Every inner node other than the root is at least half full (M/2− 1 <= num of keys <= M − 1).
• Every inner node with k keys has k+1 non-null children.

Every node in a B+Tree contains an array of key/value pairs. The keys in these pairs are derived from the
attribute(s) that the index is based on. The values will differ based on whether a node is an inner node or
a leaf node. For inner nodes, the value array will contain pointers to other nodes. Two approaches for leaf
node values are record IDs and tuple data. Record IDs refer to a pointer to the location of the tuple. Leaf
nodes that have tuple data store the the actual contents of the tuple in each node.

Arrays at every node are (almost) sorted by the keys.

Insertion
To insert a new entry into a B+Tree, one must traverse down the tree and use the inner nodes to figure out
which leaf node to insert the key into.

1. Find correct leaf L.
2. Add new entry into L in sorted order:

• If L has enough space, the operation is done.
• Otherwise split L into two nodes L and L2. Redistribute entries evenly and copy up middle key.

Insert index entry pointing to L2 into parent of L.
3. To split an inner node, redistribute entries evenly, but push up the middle key.

Deletion
Whereas in inserts we occasionally had to split leaves when the tree got too full, if a deletion causes a tree
to be less than half-full, we must merge in order to re-balance the tree.

1. Find correct leaf L.
2. Remove the entry:

• If L is at least half full, the operation is done.
• Otherwise, you can try to redistribute, borrowing from sibling.
• If redistribution fails, merge L and sibling.

3. If merge occurred, you must delete entry in parent pointing to L.

Selection Conditions
Because B+Trees are in sorted order, look ups have fast traversal and also do not require the entire key. The
DBMS can use a B+Tree index if the query provides any of the attributes of the search key. This differs
from a hash index, which requires all attributes in the search key.

Non-Unique Indexes
Like in hash tables, B+Trees can deal with non-unique indexes by duplicating keys or storing value lists. In
the duplicate keys approach, the same leaf node layout is used but duplicate keys are stored multiple times.
In the value lists approach, each key is stored only once and maintains a linked list of unique values.

Duplicate Keys
There are two approaches to duplicate keys in a B+Tree.

The first approach is to append record IDs as part of the key. Since each tuple’s record ID is unique, this

15-445/645 Database Systems
Page 2 of 3

https://15445.courses.cs.cmu.edu/fall2020/


Fall 2020 – Lecture #07 Tree Indexes I

A,C B,B C,C

A,C B,AA,A A,B B,B B,C C,C C,D

Find Key=(A,*)
A ≤ A

A ≤ B

Figure 2: To perform a prefix search on a B+Tree, one looks at the first attribute on
the key, follows the path down and performs a sequential scan across the leaves to find
all they keys that one wants.

will ensure that all the keys are identifiable.

The second approach is to allow leaf nodes to spill into overflow nodes that contain the duplicate keys.
Although no redundant information is stored, this approach is more complex to maintain and modify.

Clustered Indexes
The table is stored in the sort order specified by the primary key, as either heap- or index-organized storage.
Since some DBMSs always use a clustered index, they will automatically make a hidden row id primary key
if a table doesn’t have an explicit one, but others cannot use them at all.

Heap Clustering
Tuples are sorted in the heap’s pages using the order specified by a clustering index. DBMS can jump
directly to the pages if clustering index’s attributes are used to access tuples.

Index Scan Page Sorting
Since directly retrieving tuples from an unclustered index is inefficient, the DBMS can first figure out all the
tuples that it needs and then sort them based on their page id.

15-445/645 Database Systems
Page 3 of 3

https://15445.courses.cs.cmu.edu/fall2020/

	Table Indexes
	B+Tree

