
Intro to Database Systems

15-445/15-645

Fall 2020

Andy Pavlo
Computer Science
Carnegie Mellon UniversityAP

08 Tree Indexes
Part II

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2020
https://15445.courses.cs.cmu.edu/fall2019/
http://www.cs.cmu.edu/~pavlo/
http://www.cs.cmu.edu/~pavlo/

15-445/645 (Fall 2020)

ADMINISTRIVIA

Homework #2 is due Sunday Oct 4th

Project #2 will be released tonight:
→ Checkpoint #1: Due Sunday Oct 11th

→ Checkpoint #2: Due Sunday Oct 25th

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

UPCOMING DATABASE TALKS

CockroachDB Query Optimizer
→ Monday Sept 28th @ 5pm ET

Apache Arrow
→ Monday Oct 5th @ 5pm ET

DataBricks Query Optimizer
→ Monday Oct 12th @ 5pm ET

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/events/quarantine-db-talk-2020-cockroachdb-optimizer/
https://db.cs.cmu.edu/events/quarantine-db-talk-2020-apache-arrow/
https://db.cs.cmu.edu/events/quarantine-db-talk-2020-databricks/

15-445/645 (Fall 2020)

TODAY'S AGENDA

More B+Trees

Additional Index Magic

Tries / Radix Trees

Inverted Indexes

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

B+TREE DESIGN CHOICES

Node Size

Merge Threshold

Variable Length Keys

Intra-Node Search

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://dl.acm.org/citation.cfm?id=2185842

15-445/645 (Fall 2020)

NODE SIZE

The slower the storage device, the larger the
optimal node size for a B+Tree.
→ HDD ~1MB
→ SSD: ~10KB
→ In-Memory: ~512B

Optimal sizes can vary depending on the workload
→ Leaf Node Scans vs. Root-to-Leaf Traversals

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MERGE THRESHOLD

Some DBMSs do not always merge nodes when it
is half full.

Delaying a merge operation may reduce the
amount of reorganization.

It may also be better to just let underflows to exist
and then periodically rebuild entire tree.

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

VARIABLE LENGTH KEYS

Approach #1: Pointers
→ Store the keys as pointers to the tuple’s attribute.

Approach #2: Variable Length Nodes
→ The size of each node in the index can vary.
→ Requires careful memory management.

Approach #3: Padding
→ Always pad the key to be max length of the key type.

Approach #4: Key Map / Indirection
→ Embed an array of pointers that map to the key + value

list within the node.

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

¤ ¤ ¤ ¤

Andy V1 Obama
Prashanth

V3
V4

Lin V2

B+Tree Leaf Node

KEY MAP / INDIRECTION

9

Key+Values

¤
Prev

¤
Next

#
Level

#
Slots

Sorted Key Map

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

¤ ¤ ¤ ¤

Andy V1 Obama
Prashanth

V3
V4

Lin V2

B+Tree Leaf Node

KEY MAP / INDIRECTION

9

Key+Values

¤
Prev

¤
Next

#
Level

#
Slots

Sorted Key Map

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

¤ ¤ ¤ ¤

Andy V1 Obama
Prashanth

V3
V4

Lin V2

B+Tree Leaf Node

KEY MAP / INDIRECTION

9

Key+Values

¤
Prev

¤
Next

#
Level

#
Slots

Sorted Key Map

A·¤ L·¤ O·¤ P·¤

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

INTRA-NODE SEARCH

Approach #1: Linear
→ Scan node keys from beginning to end.

Approach #2: Binary
→ Jump to middle key, pivot left/right

depending on comparison.

Approach #3: Interpolation
→ Approximate location of desired key based

on known distribution of keys.

10

Find Key=8
5 6 7 8 9 104

5 6 7 8 9 104

5 6 7 8 9 104

Offset: 7-(10-8)=5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

OPTIMIZATIONS

Prefix Compression

Deduplication

Suffix Truncation

Bulk Insert

Pointer Swizzling

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

PREFIX COMPRESSION

Sorted keys in the same leaf node are
likely to have the same prefix.

Instead of storing the entire key each
time, extract common prefix and store
only unique suffix for each key.
→ Many variations.

12

robbed robbing robot

bed bing ot

Prefix: rob

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

DEDUPLICATION

Non-unique indexes can end up
storing keys multiple copies of the
same key in leaf nodes.
→ This will make more sense when we talk

about MVCC.

The leaf node can store the key once
and then a maintain a list of record ids
with that key.

13

K1 V1 K1 V2 K1 V3 K2 V4

K1 V1 V2 V3 K2 V4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

SUFFIX TRUNCATION

The keys in the inner nodes are only
used to "direct traffic".
→ We don't need the entire key.

Store a minimum prefix that is needed
to correctly route probes into the
index.

14

abcdefghijk lmnopqrstuv

… …… …

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

SUFFIX TRUNCATION

The keys in the inner nodes are only
used to "direct traffic".
→ We don't need the entire key.

Store a minimum prefix that is needed
to correctly route probes into the
index.

14

… …… …

abc lmn

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

BULK INSERT

The fastest way to build a new
B+Tree for an existing table is to first
sort the keys and then build the index
from the bottom up.

15

6 7 9 131 3

Keys: 3, 7, 9, 13, 6, 1

Sorted Keys: 1, 3, 6, 7, 9, 13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

BULK INSERT

The fastest way to build a new
B+Tree for an existing table is to first
sort the keys and then build the index
from the bottom up.

15

6 9

6 7 9 131 3

Keys: 3, 7, 9, 13, 6, 1

Sorted Keys: 1, 3, 6, 7, 9, 13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

If a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids
address lookups from the page table.

16

6 9

6 71 3

B
u

ff
e

r
P

o
o

l

1
Header

2
Header

3
Header

Find Key>3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

If a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids
address lookups from the page table.

16

6 9

6 71 3

Page #2

B
u

ff
e

r
P

o
o

l

1
Header

2
Header

3
Header

Page #2 → <Page*>

Find Key>3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

If a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids
address lookups from the page table.

16

6 9

6 71 3

Page #2

Page #3

B
u

ff
e

r
P

o
o

l

1
Header

2
Header

3
Header

Page #2 → <Page*>
Page #3 → <Page*>

Find Key>3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

If a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids
address lookups from the page table.

16

6 9

6 71 3

B
u

ff
e

r
P

o
o

l

1
Header

2
Header

3
Header

Find Key>3

<Page*>

<Page*>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

PARTIAL INDEXES

Create an index on a subset of the
entire table. This potentially reduces
its size and the amount of overhead
to maintain it.

One common use case is to partition
indexes by date ranges.
→ Create a separate index per month, year.

17

CREATE INDEX idx_foo
ON foo (a, b)

WHERE c = 'WuTang';

SELECT b FROM foo
WHERE a = 123
AND c = 'WuTang';

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

PARTIAL INDEXES

Create an index on a subset of the
entire table. This potentially reduces
its size and the amount of overhead
to maintain it.

One common use case is to partition
indexes by date ranges.
→ Create a separate index per month, year.

17

CREATE INDEX idx_foo
ON foo (a, b)

WHERE c = 'WuTang';

SELECT b FROM foo
WHERE a = 123
AND c = 'WuTang';

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

COVERING INDEXES

If all the fields needed to process the
query are available in an index, then
the DBMS does not need to retrieve
the tuple.

This reduces contention on the
DBMS's buffer pool resources.

Also called index-only scans.

18

SELECT b FROM foo
WHERE a = 123;

CREATE INDEX idx_foo
ON foo (a, b);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://www.postgresql.org/docs/current/indexes-index-only-scans.html

15-445/645 (Fall 2020)

COVERING INDEXES

If all the fields needed to process the
query are available in an index, then
the DBMS does not need to retrieve
the tuple.

This reduces contention on the
DBMS's buffer pool resources.

Also called index-only scans.

18

SELECT b FROM foo
WHERE a = 123;

CREATE INDEX idx_foo
ON foo (a, b);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://www.postgresql.org/docs/current/indexes-index-only-scans.html

15-445/645 (Fall 2020)

INDEX INCLUDE COLUMNS

Embed additional columns in indexes
to support index-only queries.

These extra columns are only stored
in the leaf nodes and are not part of
the search key.

19

CREATE INDEX idx_foo
ON foo (a, b)

INCLUDE (c);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

INDEX INCLUDE COLUMNS

Embed additional columns in indexes
to support index-only queries.

These extra columns are only stored
in the leaf nodes and are not part of
the search key.

19

SELECT b FROM foo
WHERE a = 123
AND c = 'WuTang';

CREATE INDEX idx_foo
ON foo (a, b)

INCLUDE (c);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

INDEX INCLUDE COLUMNS

Embed additional columns in indexes
to support index-only queries.

These extra columns are only stored
in the leaf nodes and are not part of
the search key.

19

SELECT b FROM foo
WHERE a = 123
AND c = 'WuTang';

CREATE INDEX idx_foo
ON foo (a, b)

INCLUDE (c);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

FUNCTIONAL/EXPRESSION INDEXES

An index does not need to store keys
in the same way that they appear in
their base table.

20

SELECT * FROM users
WHERE EXTRACT(dow

⮱FROM login) = 2;

CREATE INDEX idx_user_login
ON users (login);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

FUNCTIONAL/EXPRESSION INDEXES

An index does not need to store keys
in the same way that they appear in
their base table.

You can use expressions when
declaring an index.

20

SELECT * FROM users
WHERE EXTRACT(dow

⮱FROM login) = 2;

CREATE INDEX idx_user_login
ON users (login);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

FUNCTIONAL/EXPRESSION INDEXES

An index does not need to store keys
in the same way that they appear in
their base table.

You can use expressions when
declaring an index.

20

SELECT * FROM users
WHERE EXTRACT(dow

⮱FROM login) = 2;

CREATE INDEX idx_user_login
ON users (login);

CREATE INDEX idx_user_login
ON users (EXTRACT(dow FROM login));

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

FUNCTIONAL/EXPRESSION INDEXES

An index does not need to store keys
in the same way that they appear in
their base table.

You can use expressions when
declaring an index.

20

SELECT * FROM users
WHERE EXTRACT(dow

⮱FROM login) = 2;

CREATE INDEX idx_user_login
ON users (login);

CREATE INDEX idx_user_login
ON users (EXTRACT(dow FROM login));

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

FUNCTIONAL/EXPRESSION INDEXES

An index does not need to store keys
in the same way that they appear in
their base table.

You can use expressions when
declaring an index.

20

SELECT * FROM users
WHERE EXTRACT(dow

⮱FROM login) = 2;

CREATE INDEX idx_user_login
ON users (login);

CREATE INDEX idx_user_login
ON users (EXTRACT(dow FROM login));

CREATE INDEX idx_user_login
ON foo (login)

WHERE EXTRACT(dow FROM login) = 2;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

FUNCTIONAL/EXPRESSION INDEXES

An index does not need to store keys
in the same way that they appear in
their base table.

You can use expressions when
declaring an index.

20

SELECT * FROM users
WHERE EXTRACT(dow

⮱FROM login) = 2;

CREATE INDEX idx_user_login
ON users (login);

CREATE INDEX idx_user_login
ON users (EXTRACT(dow FROM login));

CREATE INDEX idx_user_login
ON foo (login)

WHERE EXTRACT(dow FROM login) = 2;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

OBSERVATION

The inner node keys in a B+Tree cannot tell you
whether a key exists in the index. You must always
traverse to the leaf node.

This means that you could have (at least) one
buffer pool page miss per level in the tree just to
find out a key does not exist.

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TRIE INDEX

Use a digital representation of keys to
examine prefixes one-by-one instead
of comparing entire key.
→ Also known as Digital Search Tree, Prefix

Tree.

22

Keys: HELLO, HAT, HAVE

L

L

O

¤

¤ E

¤

H

A E

VT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TRIE INDEX

Use a digital representation of keys to
examine prefixes one-by-one instead
of comparing entire key.
→ Also known as Digital Search Tree, Prefix

Tree.

22

Keys: HELLO, HAT, HAVE

L

L

O

¤

¤ E

¤

H

A E

VT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TRIE INDEX PROPERTIES

Shape only depends on key space and lengths.
→ Does not depend on existing keys or insertion order.
→ Does not require rebalancing operations.

All operations have O(k) complexity where k is the
length of the key.
→ The path to a leaf node represents the key of the leaf
→ Keys are stored implicitly and can be reconstructed from

paths.

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TRIE KEY SPAN

The span of a trie level is the number of bits that
each partial key / digit represents.
→ If the digit exists in the corpus, then store a pointer to the

next level in the trie branch. Otherwise, store null.

This determines the fan-out of each node and the
physical height of the tree.
→ n-way Trie = Fan-Out of n

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TRIE KEY SPAN

Keys: K10,K25,K31

25

K10→ 00000000 00001010

K25→ 00000000 00011001

K31→ 00000000 00011111

1-bit Span Trie

0 ¤ 1 Ø

0 ¤ 1 Ø

0 ¤ 1 ¤

0 ¤ 1 Ø

0 Ø 1 ¤

0 ¤ 1 Ø

0 ¤ 1 Ø

0 Ø 1 ¤

0 Ø 1 ¤ 0 Ø 1 ¤

0 ¤ 1 ¤

0 Ø 1 ¤

0 Ø 1 ¤

Repeat 10x

Tuple
Pointer

Node
Pointer

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TRIE KEY SPAN

Keys: K10,K25,K31

25

K10→ 00000000 00001010

K25→ 00000000 00011001

K31→ 00000000 00011111

1-bit Span Trie

0 ¤ 1 Ø

0 ¤ 1 Ø

0 ¤ 1 ¤

0 ¤ 1 Ø

0 Ø 1 ¤

0 ¤ 1 Ø

0 ¤ 1 Ø

0 Ø 1 ¤

0 Ø 1 ¤ 0 Ø 1 ¤

0 ¤ 1 ¤

0 Ø 1 ¤

0 Ø 1 ¤

Repeat 10x

Tuple
Pointer

Node
Pointer

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TRIE KEY SPAN

Keys: K10,K25,K31

25

K10→ 00000000 00001010

K25→ 00000000 00011001

K31→ 00000000 00011111

1-bit Span Trie

0 ¤ 1 Ø

0 ¤ 1 Ø

0 ¤ 1 ¤

0 ¤ 1 Ø

0 Ø 1 ¤

0 ¤ 1 Ø

0 ¤ 1 Ø

0 Ø 1 ¤

0 Ø 1 ¤ 0 Ø 1 ¤

0 ¤ 1 ¤

0 Ø 1 ¤

0 Ø 1 ¤

Repeat 10x

Tuple
Pointer

Node
Pointer

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TRIE KEY SPAN

Keys: K10,K25,K31

25

K10→ 00000000 00001010

K25→ 00000000 00011001

K31→ 00000000 00011111

1-bit Span Trie

0 ¤ 1 Ø

0 ¤ 1 Ø

0 ¤ 1 ¤

0 ¤ 1 Ø

0 Ø 1 ¤

0 ¤ 1 Ø

0 ¤ 1 Ø

0 Ø 1 ¤

0 Ø 1 ¤ 0 Ø 1 ¤

0 ¤ 1 ¤

0 Ø 1 ¤

0 Ø 1 ¤

Repeat 10x

Tuple
Pointer

Node
Pointer

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TRIE KEY SPAN

Keys: K10,K25,K31

25

K10→ 00000000 00001010

K25→ 00000000 00011001

K31→ 00000000 00011111

1-bit Span Trie

0 ¤ 1 Ø

0 ¤ 1 Ø

0 ¤ 1 ¤

0 ¤ 1 Ø

0 Ø 1 ¤

0 ¤ 1 Ø

0 ¤ 1 Ø

0 Ø 1 ¤

0 Ø 1 ¤ 0 Ø 1 ¤

0 ¤ 1 ¤

0 Ø 1 ¤

0 Ø 1 ¤

Repeat 10x

Tuple
Pointer

Node
Pointer

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TRIE KEY SPAN

Keys: K10,K25,K31

25

K10→ 00000000 00001010

K25→ 00000000 00011001

K31→ 00000000 00011111

1-bit Span Trie

0 ¤ 1 Ø

0 ¤ 1 Ø

0 ¤ 1 ¤

0 ¤ 1 Ø

0 Ø 1 ¤

0 ¤ 1 Ø

0 ¤ 1 Ø

0 Ø 1 ¤

0 Ø 1 ¤ 0 Ø 1 ¤

0 ¤ 1 ¤

0 Ø 1 ¤

0 Ø 1 ¤

Repeat 10x

Tuple
Pointer

Node
Pointer

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TRIE KEY SPAN

Keys: K10,K25,K31

25

K10→ 00000000 00001010

K25→ 00000000 00011001

K31→ 00000000 00011111

1-bit Span Trie

0 ¤ 1 Ø

0 ¤ 1 Ø

0 ¤ 1 ¤

0 ¤ 1 Ø

0 Ø 1 ¤

0 ¤ 1 Ø

0 ¤ 1 Ø

0 Ø 1 ¤

0 Ø 1 ¤ 0 Ø 1 ¤

0 ¤ 1 ¤

0 Ø 1 ¤

0 Ø 1 ¤

Repeat 10x

Tuple
Pointer

Node
Pointer

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TRIE KEY SPAN

Keys: K10,K25,K31

25

K10→ 00000000 00001010

K25→ 00000000 00011001

K31→ 00000000 00011111

1-bit Span Trie

Repeat 10x

¤ Ø

¤ Ø

¤ ¤

¤ Ø

Ø ¤

¤ Ø

¤ Ø

Ø ¤

Ø ¤ Ø ¤

¤ ¤

Ø ¤

Ø ¤

Tuple
Pointer

Node
Pointer

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TRIE KEY SPAN

Keys: K10,K25,K31

25

K10→ 00000000 00001010

K25→ 00000000 00011001

K31→ 00000000 00011111

1-bit Span Trie

Repeat 10x

¤ Ø

¤ Ø

¤ ¤

¤ Ø

Ø ¤

¤ Ø

¤ Ø

Ø ¤

Ø ¤ Ø ¤

¤ ¤

Ø ¤

Ø ¤

Tuple
Pointer

Node
Pointer

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

RADIX TREE

Omit all nodes with only a single
child.
→ Also known as Patricia Tree.

Can produce false positives, so the
DBMS always checks the original
tuple to see whether a key matches.

26

1-bit Span Radix Tree

¤ Ø

¤ Ø

¤ ¤

Ø ¤

¤ ¤

Repeat 10x

Tuple
Pointer

Node
Pointer

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

OBSERVATION

The tree indexes that we've discussed so far are
useful for "point" and "range" queries:
→ Find all customers in the 15217 zipcode.
→ Find all orders between June 2018 and September 2018.

They are not good at keyword searches:
→ Find all Wikipedia articles that contain the word "Pavlo"

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

WIKIPEDIA EXAMPLE

28

CREATE TABLE revisions (
revID INT PRIMARY KEY,
userID INT REFERENCES useracct (userID),
pageID INT REFERENCES pages (pageID),
content TEXT,
updated DATETIME

);

CREATE TABLE pages (
pageID INT PRIMARY KEY,
title VARCHAR UNIQUE,
latest INT
⮱REFERENCES revisions (revID),

);

CREATE TABLE useracct (
userID INT PRIMARY KEY,
userName VARCHAR UNIQUE,
⋮

);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

WIKIPEDIA EXAMPLE

If we create an index on the content
attribute, what does that do?

This doesn't help our query.

Our SQL is also not correct...

29

CREATE INDEX idx_rev_cntnt
ON revisions (content);

SELECT pageID FROM revisions
WHERE content LIKE '%Pavlo%';

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

INVERTED INDEX

An inverted index stores a mapping of words to
records that contain those words in the target
attribute.
→ Sometimes called a full-text search index.
→ Also called a concordance in old (like really old) times.

The major DBMSs support these natively.
There are also specialized DBMSs.

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

QUERY T YPES

Phrase Searches
→ Find records that contain a list of words in the given

order.

Proximity Searches
→ Find records where two words occur within n words of

each other.

Wildcard Searches
→ Find records that contain words that match some pattern

(e.g., regular expression).

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

DESIGN DECISIONS

Decision #1: What To Store
→ The index needs to store at least the words contained in

each record (separated by punctuation characters).
→ Can also store frequency, position, and other meta-data.

Decision #2: When To Update
→ Maintain auxiliary data structures to "stage" updates and

then update the index in batches.

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CONCLUSION

B+Trees are still the way to go for tree indexes.

Inverted indexes are covered in CMU 11-442.

We did not discuss geo-spatial tree indexes:
→ Examples: R-Tree, Quad-Tree, KD-Tree
→ This is covered in CMU 15-826.

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://boston.lti.cs.cmu.edu/classes/11-642/
http://www.cs.cmu.edu/~christos/courses/826.S17/

15-445/645 (Fall 2020)

NEXT CL ASS

How to make indexes thread-safe!

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

