Carnegie Mellon University

~ ,_”‘; N

-~

09 Index Concurrency
Control

15-445/15-645 Computer Science
Ny @ Fall 2020 Carnegie Mellon University

o Intro to Database Systems Andy Pavlo
X AP

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2020
https://15445.courses.cs.cmu.edu/fall2019/
http://www.cs.cmu.edu/~pavlo/
http://www.cs.cmu.edu/~pavlo/

ADMINISTRIVIA

Homework #2 is due Sunday Oct 4%

Project #2 is now released:
— Checkpoint #1: Due Sunday Oct 11t
— Checkpoint #2: Due Sunday Oct 25"

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

OBSERVATION

We assumed that all the data structures that we
have discussed so far are single-threaded.

But we need to allow multiple threads to safely

access our data structures to take advantage of
additional CPU cores and hide disk I/O stalls.

K They Don't Do This!

YOLTDB
B é redis I5]-Store

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://voltdb.com/
https://redis.io/

CONCURRENCY CONTROL

A concurrency control protocol is the method
that the DBMS uses to ensure "correct" results for
concurrent operations on a shared object.

A protocol's correctness criteria can vary:
— Logical Correctness: Can a thread see the data that it is
supposed to see?

— Physical Correctness: s the internal representation of
the object sound?

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

TODAY'S AGENDA

Latches Overview
Hash Table Latching
B+Tree Latching

Leaf Node Scans
Delayed Parent Updates

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

LOCKS VS. LATCHES

Locks

— Protects the database's logical contents from other txns.
— Held for txn duration.
— Need to be able to rollback changes.

Latches

— Protects the critical sections of the DBMS's internal data
structure from other threads.

— Held for operation duration.

— Do not need to be able to rollback changes.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

LOCKS VS. LATCHES

Locks Latches
Separate... User transactions Threads
Protect... Database Contents In-Memory Data Structures
During... Entire Transactions Critical Sections
Modes... Shared, Exclusive, Update, Read, Write
Intention
Deadlock Detection & Resolution Avoidance
...by... Waits-for, Timeout, Aborts Coding Discipline
Keptin... Lock Manager Protected Data Structure

Source: Goetz Graefe
§=CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/06-indexes/a16-graefe.pdf

LOCKS VS. LATCHES

mﬂ Locks

Latches

Separate... User transactions
Protect... Database Contents
During... Entire Transactions

Modes... Shared, Exclusive, Update,
Intention

Deadlock Detection & Resolution
...by... Waits-for, Timeout, Aborts

Keptin... Lock Manager

Source: Goetz Graefe
§=CMU-DB

15-445/645 (Fall 2020)

Threads
In-Memory Data Structures

Critical Sections

Read, Write

Avoidance
Coding Discipline

Protected Data Structure

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/06-indexes/a16-graefe.pdf
https://15445.courses.cs.cmu.edu/fall2019/schedule.html#oct-23-2019

LATCH MODES

Read Mode

— Multiple threads can read the same object
at the same time.

— A thread can acquire the read latch if
another thread has it in read mode.

Write Mode

— Only one thread can access the object.

— A thread cannot acquire a write latch if
another thread holds the latch in any
mode.

£SCMU-DB

15-445/645 (Fall 2020)

-----R

Compatibility Matrix
Read Write

Read v 4 X
Write X X

J

\-----‘

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

LATCH IMPLEMENTATIONS

Blocking OS Mutex
Test-and-Set Spinlock
Reader-Writer Locks

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

LATCH IMPLEMENTATIONS

Approach #1: Blocking OS Mutex

— Simple to use

— Non-scalable (about 25ns per lock/unlock invocation)
— Example: std: :mutex

std: :mutex m;—pthread_mutex_t
: }

m.lock(); (R

// Do something special. ..
m.unlock();

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html

10

LATCH IMPLEMENTATIONS

Approach #1: Blocking OS Mutex
— Simple to use
— Non-scalable (about 25ns per lock/unlock invocation)

— Example: std: :mutex
B OS Latch

ﬁ Userspace Latch

std: :mutex m;—pthread_mutex_t
: }

m.lock(); Qe

// Do something special. ..
m.unlock();

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html

10

LATCH IMPLEMENTATIONS

Approach #1: Blocking OS Mutex

— Simple to use
— Non-scalable (about 25ns per lock/unlock invocation)

— Example: std: :mutex
B OS Latch

ﬁ Userspace Latch

o

std: :mutex m;—pthread_mutex_t

: ¥
m.lock(); Qe ﬁ

// Do something special. ..
m.unlock();

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html

LATCH IMPLEMENTATIONS

Approach #2: Test-and-Set Spin Latch (TAS)

— Very efficient (single instruction to latch/unlatch)
— Non-scalable, not cache friendly, not OS friendly.
— Example: std: :atomic<T>

std':atomic<bool>

std::atomic_flag latch;

while (latch.test_and_set(..)) {
// Retry? Yield? Abort?

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

LATCH IMPLEMENTATIONS

Approach #2: Test-and-Set Spin Latch (TAS)
— Very efficient (single instruction to latch/unlatch)

— Non-scalable, not cache friendly, not OS friendly.

— Example: std: :atomic<T>

std::atom"*“bool>
std: :atomic_flag latch;)
while (latch.test_and_set(..)) {
// Retry? Yield? Abort?
3

£SCMU-DB

15-445/645 (Fall 2020)

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

Room: Moderated Discussions

The whole post Seems to be just wrong, and is measuring something completely different than what the author thinks and claims jt is
measuring.

First off, spinlocks can only be used if You actually know you're not being scheduled while using them. But the blog post author seems to be
implementing his own spinlocks in user space with Nno regard for whether the lock user might be scheduled or not. And the code used for the
claimed "lock not held" timing is complete garbage.

It basically reads the time before releasi
the time when no lock was held. Which i

—> VeI'Y efﬁ That's pure garbage. What happens is that
3 Non_scal (a) since you're spinning, you're using CPU time
(b) at a random time, the scheduler will erhad.u
— Examnle

ng the lock, and then

it reads it after acquiring the lock again, and claims that the time difference is
s just inane and pointless and completely wrong.

i u
| repeat: do not use spinlocks in usel;j s;bpac::.’,al l:;::ﬁ:ftﬁg
- ' - An e a ng it - it's still
know what you're doing. he | | b
fi‘lgllilr?ggd that you know what you are doing is basically ni

related to your
ot its
n't even

rent time" you

TS OIS TS auy ()
reaeTIatwWans that lock that is stil| being held by the thread that is
gt TIOWT

// R So the code in que

that you are measuring random latencies and get

Post blamings others, not understanding that jt's your incorrect code that is
[values.

£2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://www.realworldtech.com/forum/?threadid=189711&curpostid=189723
https://www.realworldtech.com/forum/?threadid=189711&curpostid=189723

LATCH IMPLEMENTATIONS

Choice #3: Reader-Writer Locks

— Allows for concurrent readers.
— Must manage read/write queues to avoid starvation.
— Can be implemented on top of spinlocks.

o

Latch

o

read wrlte
ﬁ =
X =0 X =0

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

LATCH IMPLEMENTATIONS

Choice #3: Reader-Writer Locks

— Allows for concurrent readers.
— Must manage read/write queues to avoid starvation.
— Can be implemented on top of spinlocks.

Latch

o

ﬁ

read wrlte
=
X =0 X =0

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

LATCH IMPLEMENTATIONS

Choice #3: Reader-Writer Locks

— Allows for concurrent readers.
— Must manage read/write queues to avoid starvation.
— Can be implemented on top of spinlocks.

Latch

o

£-43

read wrlte
ﬁ =
X =0 X =0

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

LATCH IMPLEMENTATIONS

Choice #3: Reader-Writer Locks

— Allows for concurrent readers.
— Must manage read/write queues to avoid starvation.
— Can be implemented on top of spinlocks.

Latch

66 0 ﬁ—ﬂ

read wrlte

=2
X =0 B =1

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

LATCH IMPLEMENTATIONS

Choice #3: Reader-Writer Locks

— Allows for concurrent readers.

— Must manage read/write queues to avoid starvation.

— Can be implemented on top of spinlocks.

g a ﬂ Latch

-6 6o ﬁ—#

read wrlte
15-445/645 (Fall 2020)

-2
X =1 B =1

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

HASH TABLE LATCHING

Easy to support concurrent access due to the

limited ways threads access the data structure.

— All threads move in the same direction and only access a
single page/slot at a time.

— Deadlocks are not possible.

To resize the table, take a global write latch on the
entire table (i.e., in the header page).

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

HASH TABLE LATCHING

Approach #1: Page Latches

— Each page has its own reader-write latch that protects its
entire contents.

— Threads acquire either a read or write latch before they
access a page.

Approach #2: Slot Latches

— Each slot has its own latch.

— Can use a single mode latch to reduce meta-data and
computational overhead.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

HASH TABLE — PAGE LATCHES

T, Find D -
hash(D)

§=CMuU-DB
15-445/645 (Fall 2020)

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

HASH TABLE — PAGE LATCHES

T;:Find D
hash(D)

§=CMU-DB
15-445/645 (Fall 2020)

B|val
R 2
.
Alval
C|wval
D|val

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

HASH TABLE — PAGE LATCHES

T;:Find D
hash(D)

§=CMU-DB
15-445/645 (Fall 2020)

g T,: Insert E

B|val
R 2
.
Alval
C|wval

/ hash(E)

D|val

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

HASH TABLE — PAGE LATCHES

T;:Find D
hash(D)

§=CMU-DB
15-445/645 (Fall 2020)

B|val

g T,: Insert E

Alval

»

Clval

/ hash(E)

D|val

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

HASH TABLE — PAGE LATCHES

B|val

It’s safe to release the
latch on Page #1.

g T,: Insert E

hash(D) : hash(E)
Alval /
C|wval

» D|val

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

HASH TABLE — PAGE LATCHES

T;:Find D
hash(D)

§=CMU-DB
15-445/645 (Fall 2020)

B|val

g T,: Insert E

Alval

Clval

/ hash(E)

D|val

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

HASH TABLE — PAGE LATCHES

T;:Find D
hash(D)

§=CMU-DB
15-445/645 (Fall 2020)

B|val

Alval

Clval

D|val

T,: Insert E
hash(E)

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

HASH TABLE — PAGE LATCHES

T;:Find D
hash(D)

§=CMU-DB
15-445/645 (Fall 2020)

B|val

L

Alval

Clval

D|val

T,: Insert E
hash(E)

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

HASH TABLE — PAGE LATCHES

B|val
T, Find D
hash(D)
Alval
C|val

D

£2CMU-DB

D|val

15-445/645 (Fall 2020,)

T,: Insert E
hash(E)

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

HASH TABLE — PAGE LATCHES

B|val
T, Find D
hash(D)
Alval
C|val
D|val

£2CMU-DB

E|val

15-445/645 (Fall 2020,)

T,: Insert E
hash(E)

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

HASH TABLE — SLOT LATCHES

T, Find D

B|val

hash(D) \

Alval

C|val

D|val

£2CMU-DB

15-445/645 (Fall 2020,)

T,: Insert E
hash(E)

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

HASH TABLE — SLOT LATCHES

T;:Find D
hash(D)

§=CMU-DB
15-445/645 (Fall 2020)

B|val

) DA |val

Clval

D|val

T,: Insert E
hash(E)

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

HASH TABLE — SLOT LATCHES

T;:Find D
hash(D)

§=CMU-DB
15-445/645 (Fall 2020)

B|val

T,: Insert E

) DA |val

Clval

/ hash(E)

D|val

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

HASH TABLE — SLOT LATCHES

B|val

It’s safe to release the
T, latch on A T,: Insert E

hash(E)

has.h(D)

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

HASH TABLE — SLOT LATCHES

T;:Find D
hash(D)

§=CMU-DB
15-445/645 (Fall 2020)

B|val

B»%%K_

D|val

T,: Insert E
hash(E)

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

HASH TABLE — SLOT LATCHES

T;:Find D
hash(D)

§=CMU-DB
15-445/645 (Fall 2020)

B|val

by

Alval

Clval

Dlsfalﬁ

T,: Insert E
hash(E)

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

HASH TABLE — SLOT LATCHES

T;:Find D
hash(D)

§=CMU-DB
15-445/645 (Fall 2020)

B|val

Alval

4o

Clval

Dlsfalﬁ

T,: Insert E
hash(E)

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

HASH TABLE — SLOT LATCHES

T;:Find D
hash(D)

§=CMU-DB
15-445/645 (Fall 2020)

B|val

n Alval
g W 0C|val

D|
E|va

T,: Insert E
hash(E)

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

HASH TABLE — SLOT LATCHES

T;:Find D
hash(D)

§=CMU-DB
15-445/645 (Fall 2020)

B|val

T,: Insert E
hash(E)

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

B+TREE CONCURRENCY CONTROL

We want to allow multiple threads to read and
update a B+Tree at the same time.

We need to protect from two types of problems:

— Threads trying to modify the contents of a node at the
same time.

— One thread traversing the tree while another thread
splits/merges nodes.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

18

B+TREE MULTI-THREADED EXAMPLE

/

10

20

12

A

35

T,: Delete 44

44 ||D

(08)
N
(0]
O

117

13

31

iRo
38| 41€ 44

§=CMU-DB
15-445/645 (Fall 2020)

H I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

18

B+TREE MULTI-THREADED EXAMPLE

"

/

10

20

12

35

T,: Delete 44

44 ||D

(08)
N
(0]
O

117

13

31

iRo
38| 41€ 44

§=CMU-DB
15-445/645 (Fall 2020)

H I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

18

B+TREE MULTI-THREADED EXAMPLE
T,: Delete 44

/

10

20

12

A

35

44

D

\

Rebalance!

(08)
N
(0]
O

117

13

31

138

4@
H I

-

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

18

B+TREE MULTI-THREADED EXAMPLE
ol 1A « T,: Delete 44

/ T,: Find 41

10 35 B

6 12 Hb23/ Cks 44 ||D g

j \I l \ / S{ j \ Rebalance!
- H10(11 12|13 20|221{23|31H35|36 {3441} «

E F G H I

(08)
N
(@)}
<o)
—
S

55555555555555555555

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

18

B+TREE MULTI-THREADED EXAMPLE
ol 1A T,: Delete 44

/ T,: Find 41

10 35 B

o B e oot

j \I l \ / S{ j \ Rebalance!
- H10(11 12|13 20|221{23|31H35|36 {3441} «

E F G H I

(08)
N
(@)}
<o)
—
S

55555555555555555555

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

18

B+TREE MULTI-THREADED EXAMPLE
ol 1A T,: Delete 44

/ T,: Find 41

10 35 B

o B e Poos

I L LS

111712[13[20|22H23|3135|36[13 «
E F G H |

(08)
N
(@)}
<o)
—
S

55555555555555555555

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

18

B+TREE MULTI-THREADED EXAMPLE

/

10

20

12

A

35

T,: Delete 44
T,: Find 41

(08)
N
(0]
O

117

13

31

\ Rebalance!
SO 4

§=CMU-DB
15-445/645 (Fall 2020)

H I
4 227

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

LATCH CRABBING/COUPLING

Protocol to allow multiple threads to
access/modify B+Tree at the same time.

Basic Idea:

— Get latch for parent.
— Get latch for child
— Release latch for parent if “safe”.

A safe node is one that will not split or merge

when updated.
— Not full (on insertion)
— More than half-full (on deletion)

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

LATCH CRABBING/COUPLING

Find: Start at root and go down; repeatedly,

— Acquire R latch on child
— Then unlatch parent

Insert/Delete: Start at root and go down,
obtaining W latches as needed. Once child is

latched, check if it is safe:
— If child is safe, release all latches on ancestors.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

EXAMPLE #1 — FIND 38
-

10 35 B

(08)
N
(@)}
<o)
—
S

1M12(13M20(22023(31135|36 38

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

EXAMPLE #1 — FIND 38

120 A

1/ : 35 B«

It is now safe to release
the latch on A.
6 7 73 C ||38(44||D

(08)
N
(@)}
<o)
—
S

1MR12(13/20(22723|31 38

|
(08)
ol
w
(@))]
|

LA LN LA LN

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

EXAMPLE #1 — FIND 38

20 A

1/ : 35 B«

(08)
N
(@)}
<o)
—
S

1M12(13M20(22023(31135|36 38

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

EXAMPLE #1 — FIND 38

/

10 35 B

20 A

(08)
N
(@)}
<o)
—
S

1M12(13M20(22023(31135|36 38

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

EXAMPLE #1 — FIND 38

/

10 35 B

20 A

w\
1N

o €
(o)

> [€—
S/
o

|

N

S
l\)\
N

> e
-

w

(@7

N
€,

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

EXAMPLE #1 — FIND 38

/

10 35 B

20 A

W
N

o €
o)
5<\
—

—
e
N

—

w

|

N

IS
r\)\
N

N

o €
w

—

w
(J'I&
w

o))

a

oo
y
— /

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

EXAMPLE #2 — DELETE 38

o —
— N

1 35 B

6 12 Hb23/ Cks 44 ||D

(08)
N
(@)}
<o)
—
S

1M12(13M20(22023(31135|36 38

55555555555555555555

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

22

EXAMPLE #2 — DELETE 38

5

A

/

10

W

35 B«

(W e may need to coalesce B, so
we cant release the latch on A.

J

6 12 23 C ||38(|44||D
31406|9R10[11H12|1320{22H23[31H35|36H38 4}14
E F G H I

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

EXAMPLE #2 — DELETE 38

5

A
/ W
10 35 B
6 12 23 38 || 44
j \l l W e know that D will not \
merge with C, so it is safe to
314106901011 release latcheson Aand B. |38

£SCMU-DB

15-445/645 (Fall 2020)

C

&

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

EXAMPLE #2 — DELETE 38

/

10 35 B

20 A

6 12 23 38 || 44

(08)
N
(@)}
<o)
—
S

j \l l W e know that D will not \
merge with C, so it is safe to
- - 41H44

11 release latches on Aand B. |38

E F G H

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

EXAMPLE #2 — DELETE 38

/

10

20

12

A

35

B

ks 44 ||1D

(08)
N
(0]
O

117

13

123 (31

S

§=CMU-DB
15-445/645 (Fall 2020)

G H

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

EXAMPLE #2 — DELETE 38

/

10

20

12

A

35

B

ks 44 ||1D

(08)
N
(0]
O

117

13

123 (31

S

§=CMU-DB
15-445/645 (Fall 2020)

G H

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

23

EXAMPLE #3 — INSERT 45

5

A
/ W
10 35 B «
We know that if D needs to

split, B has room so it is safe
to release the latch on A. C |l38ll44||D

&

w

9n1o(11n12|113m2

REAN AN

123(31135(36[38

15-445/645 (Fall 2020)

F G H I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

11111111111111111111

EXAMPLE #3 — INSERT 45

20

/

10

12

44

w

138

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

23

EXAMPLE #3 — INSERT 45

20 A
/
10 35 B
6 12 23 C ||38]|44]||D
VR AN T A
314069 H10[11H12|13H20(22H23|31H35|36H38[41

£SCMU-DB

15-445/645 (Fall 2020)

can release B+D.

[Node I will not split, so we |

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

EXAMPLE #3 — INSERT 45

20 A
/
10 35 B
6 12 23 C ||38]|44]||D
VR AN T A
314069 H10[11H12|13H20(22H23|31H35|36H38[41

£SCMU-DB

15-445/645 (Fall 2020)

[Node I will not split, so we

can release B+D.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

EXAMPLE #4 — INSERT 25
@%

/ W

10 35 B «

6 12 Hb23/ Cks 44 ||D

LA LN LA LN

(08)
N
(@))
<o)
—
S

1M12(13M20(22023(31135|36 38

E F G H I

11111111111111111111

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

EXAMPLE #4 — INSERT 25

20 A

1/ - 35 B«

6 12 Hb23/ Cks 44 ||D

LA LN LA LN

(08)
N
(@)}
<o)
—
S

1M12(13M20(22023(31135|36 38

E F G H I

55555555555555555555

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

EXAMPLE #4 — INSERT 25

20 A

G

10 35 B

6 12 g3 C>8 44 ||D

(08)
N
(@))
<o)
—
S

1M12(13M20(22023(31135|36 38

11111111111111111111

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

EXAMPLE #4 — INSERT 25

/

10 35 B

6 12 g3 C>8 44 ||D

20 A

(08)
N
(@)}
<o)
—
S

1M12(13M20(22023(31135|36 38

55555555555555555555

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

EXAMPLE #4 — INSERT 25

/

10

20 A

(08)
N
(@))
<o)
—
S

1112113

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

EXAMPLE #4 — INSERT 25

/

10 35 B

20 A

38|44 ||D

(08)
S
(@]
o)

; 110111112[13 1201271088 | 25) 4B6 [38 4}14

7~

We need to split F, s0 we need to
hold the latch on its parent node.

£SCMU-DB

15-445/645 (Fall 2020)

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

EXAMPLE #4 — INSERT 25

/

10 35 B

20 A

38| 44

(08)
S
(@]
o)

y
. 110111112[13 1201271088 | 25) €B6 [38 4}14

We need to split F, s0 we need to
hold the latch on its parent node.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

OBSERVATION

What was the first step that all the update
examples did on the B+Tree?

4 N\ 4 N\ 4
Delete 38 Insert 45 Insert 25
%2@ A %2@ A %2@
_ _J _ _J _

Taking a write latch on the root every time
becomes a bottleneck with higher concurrency.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

BETTER LATCHING ALGORITHM

Most modifications to a B+ Tree will
not require a split or merge.

Instead of assuming that there will be
a split/merge, optimistically traverse
the tree using read latches.

[f you guess wrong, repeat traversal
with the pessimistic algorithm.

£SCMU-DB

15-445/645 (Fall 2020)

Acta Informatica 9, 1-21 (1977)

© by Sprin

Concurrency of Operations on B-Trees

R. Bayer* and M. Schkolnick
IBM Research Laboratory, San José, CA 95193, USA

Summary. Concurrent operations on B-trees pose the problem of insuring
that cach operation can be carried out without interfering with other opera-
tions being performed simultancously by other users. This problem can
become critical if these structures arc being used to support access paths,
like indexes, to data base systems. In this case, serializing access to one of
these indexes can create an unacceptable bottleneck for the entire system.
Thus, there is a need for locking protocols that can assure integrity for cach
access while at the same time providing a maximum possible degree of con-
currency. Another feature required from these protocols is that they be
deadlock free, since the cost to resolve a deadlock may be high.

Recently, there has been some questioning on whether B-tree structures
can support concurrent operations. In this paper, we examine the problem
of concurrent access to B-trees. We present a deadlock free solution which
can be tuned to specific requirements. An analysis is presented which allows
the selection of parameters so as to satisfy these requirements.

The solution presented here uses simple locking protocols. Thus, we
conclude that B-t an be used in a multi-user

1. Introduction

In this paper, we examine the problem of concurrent access to indexes which
are maintained as B-trees. This type of organization was introduced by Bayer
and McCreight [2] and some variants of it appear in Knuth [10] and Wedekind
[13]. Performance studies of it were restricted to the single user environment.
Recently, these structures have been examined for possible use in a multi-user
(concurrent) environment. Some initial studies have been made about the feasi-
bility of their use in this type of situation {1, 6], and [11].

An accessing schema which achicves a high degree of concurrency in using
the index will be presented. The schema allows dynamic tuning to adapt its
performance 1o the profile of the current set of users. Another property of the

* Permanent address: lostitut fle Informatik der Technischen Universitit Miinchen, Arcisstr. 21,
D-8000 Misnchen 2, Germany (Fed, Rep)

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://link.springer.com/article/10.1007/BF00263762

27

BETTER LATCHING ALGORITHM

Search: Same as before.

Insert/Delete:
— Set latches as if for search, get to leaf, and set W latch on

leaf.

— If leaf is not safe, release all latches, and restart thread
using previous insert/delete protocol with write latches.

This approach optimistically assumes that only leaf
node will be modified; if not, R latches set on the
first pass to leaf are wasteful.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

S=CMU-DB

EXAMPLE #2 — DELETE 38

1

e
/

12

4o

35

44

4}14

w

117

123(31[]

138

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

EXAMPLE #2 — DELETE 38

20 A

1/ : 35 B«

6 12 Hb23/ Cks 44 (|1D

LA LN LA LN

(08)
N
(@)}
<o)
—
S

1M12(13M20(22023(31135|36 38

E F G H I

S=CMU-DB

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

28

EXAMPLE #2 — DELETE 38

/

20

A

10 35 B
6 12 Hb23/ ps[[4]D 4@
304H6|9H10|11112[1320|22H23|311{35|3638 4}14

$=CMU-DB

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

28

EXAMPLE #2 — DELETE 38

20 A
/
10 35 B
6 12 23 n"? 44||D
A ARV f%
3| 4H6|9H10|11H12[13H20[22H23(31H35 368841
E F G H |

$=CMU-DB

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

EXAMPLE #2 — DELETE 38

44

20 A
/
10 35
6 12 23 C |[38
AR AR AR
314069 H10[11H12][13H20[22H23|31H35](36

$=CMU-DB

[

H will not need to coalesce, so

we e safe!

28

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

EXAMPLE #2 — DELETE 38

20 A
/
10 35 B
6 12 23 C || 38]| 44
SV N S
314869 H10[11H12]13H20[22H23|31H35

S=CMU-DB

[

H will not need to coalesce, so

we e safe!

28

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

$=CMU-DB

EXAMPLE #4 — INSERT 25

20

A

/

10
12
3! | i | s
We need to split F, so we
have to restart and re-
execute like before.

35 B

Hb23/ Cks 44 (|1D

vw‘ A 1)
7)

29

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

OBSERVATION

The threads in all the examples so far have

acquired latches in a "top-down" manner.

— A thread can only acquire a latch from a node that is
below its current node.

— If the desired latch is unavailable, the thread must wait
until it becomes available.

But what if we want to move from one leaf node

to another leaf node?

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

LEAF NODE SCAN EXAMPLE #1

T,: Find Keys < 4
R 1
13 A«

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

LEAF NODE SCAN EXAMPLE #1
T;: Find Keys < 4

et

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

LEAF NODE SCAN EXAMPLE #1
T;: Find Keys < 4

3 f Do Inlot release latch on C]

/ until thread has latch on B
CFs,
1 2 1 3 4

B \/‘«C

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

LEAF NODE SCAN EXAMPLE #1
T;: Find Keys < 4

3 f Do Inlot release latch on C]

until thread has latch on B
CFs,
1 2 1 3 4

B \/‘«C

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

LEAF NODE SCAN EXAMPLE #1

T;: Find Keys < 4
E% A /\\;
Y ERE 3 || 4

B ~—" C

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

LEAF NODE SCAN EXAMPLE #2
T;: Find Keys < 4
» : A 4 T,: Find Keys > 1

VAN

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

LEAF NODE SCAN EXAMPLE #2

T,: Find Keys < 4
@,
: ,: Find Keys > 1
T

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

LEAF NODE SCAN EXAMPLE #2

T;: Find Keys < 4
T,: Find Keys > 1

e

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

LEAF NODE SCAN EXAMPLE #2

T;: Find Keys < 4
T,: Find Keys > 1

P
1| 2 34«

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

LEAF NODE SCAN EXAMPLE #2
T;: Find Keys < 4
|BothT1and T, nowhol:ljZ: i Keys >

this read latch.
1 3 || 4

B»\/‘«C

Both T, and T, now hold
this read latch.

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

LEAF NODE SCAN EXAMPLE #2
T;: Find Keys < 4
|BothT1and T, nowhol:ljZ: i Keys >

this read latch.
i,
| «

B ~—" C

Both T, and T, now hold
this read latch.

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

LEAF NODE SCAN EXAMPLE #2
T;: Find Keys < 4
[Only T, holds] (™ Only T, holds]Tzi Find Keys > 1

this read latch. \ this read latch.
W 1 3 4 «

B ~—" C

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
T,: Find Keys > 1

S]]

VAN

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
T,: Find Keys > 1
13 A «
/ /\\,
1| 2 3 || 4

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
T,: Find Keys > 1

w BRBROL.

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
I T,: Find Keys > 1

3(T, cannot acquire]

the read latch on C
%_z AN
1] 2 EOX_

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
I T,: Find Keys > 1

3(T, cannot acquire]
the read latch on C

®ﬂ4/ €5

2] LK)

T, does not know
what T, is doing...

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
— T,: Find Keys > 1

~ T, cannot acquire
the read latch on C

T, does not know
what T, is doing...

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

LEAF NODE SCANS

Latches do not support deadlock detection or
avoidance. The only way we can deal with this
problem is through coding discipline.

The leaf node sibling latch acquisition protocol
must support a 'no-wait" mode.

The DBMS's data structures must cope with failed
latch acquisitions.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

DELAYED PARENT UPDATES

Every time a leaf node overflows, we must update

at least three nodes.

— The leaf node being split.

— The new leaf node being created.
— The parent node.

Blirk_-Tree Optimization: When a leaf node
overflows, delay updating its parent node.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

36

EXAMPLE #4 — INSERT 25

T;: Insert 25 A

320
/ R
10 35 B «

6 12 Hb23/ Cks 44 ||D

LA LN LA LN

11112|13[20|2223|3135|36[38
E F G H |

(08)
N
(@))
<o)
—
S

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

EXAMPLE #4 — INSERT 25

T;: Insert 25 0 A

G

10 35 B

(08)
N
(@))
<o)
—
S

1M12(13M20(22023(31135|36 38

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

EXAMPLE #4 — INSERT 25

/

10 35 B

T,: Insert 25 0 A

(08)
N
(@)}
<o)
—
S

1M12(13M20(22023(31135|36 38

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

EXAMPLE #4 — INSERT 25

/

10

T,: Insert 25 0 A

(08)
N
(@)}
<o)
—
S

1112113

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

T,: Insert 25

10

&

20

12

l

\

A

35

w)
TN

16

9

110

11

112

13

Add the new leaf node as a
sibling to F, but do not update C

£SCMU-DB

15-445/645 (Fall 2020)

EXAMPLE #4 — INSERT 25

/

44

38

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

EXAMPLE #4 — INSERT 25

T,: Insert 25 0 A

/

10 35 B

6 12 23 C |l38]|44]||D

o\)\

w

4H6l9H10l11H12[13H20127 25

([Add the new leaf node as a =
sibling to F, but do not update C

31

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

36

EXAMPLE #4 — INSERT 25

T,: Insert 25 20 A W C: Add 31
10 35 B
[Update C the next time that a
thread takes a write latch on it.
6 12 38([44[|D
3140619010111 12(1320(22R23(25(|35|36H38 4}14
E L Ac— H |
£2CMU-DB 31

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

36

EXAMPLE #4 — INSERT 25

T;: Insert 25 . A « W C: Add 31

T,: Find 31 /

10 35 B

6 12 HL{* Cks 44 (|1D

LA LN LA LN

1MR12(1320(22723(25(|35|36 38

E FL'T‘—G—H |

(08)
N
(@)}
<o)
—
S

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

36

EXAMPLE #4 — INSERT 25

T,: Insert 25 20 A W C: Add 31

T,: Find 31 /

10 35 B

6 12 HL{* Cks 44 (|1D

LA LN LA LN

1MR12(1320(22723(25(|35|36 38

E F| 2c—H |
§=CMuU-DB 31

15-445/645 (Fall 2020)

(08)
N
(@)}
<o)
—
S

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

36

EXAMPLE #4 — INSERT 25

T;: Insert 25 . A « W C: Add 31
T,: Find 31 /
T;: Insert 33 [[5, 35 B

6 12 HL{* Cks 44 (|1D

LA LN LA LN

1MR12(1320(22723(25(|35|36 38

E FL'T‘—G—H |

(08)
N
(@)}
<o)
—
S

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

36

EXAMPLE #4 — INSERT 25
A 4 W C: Add 31

T,: Insert 25 20
T,: Find 31 /
0

T;: Insert 33 [[;

6 12 Hb23/* Cks 44 (|1D

LA LN LA LN

1MR12(1320(22723(25(|35|36 38

E FL'T‘—G—H |

(08)
N
(@)}
<o)
—
S

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

36

EXAMPLE #4 — INSERT 25

T,: Insert 25 20 A W C: Add 31
T,: Find 31 /

R
T;: Insert 33 [[7, o B «

6 12 Hb23/* Cks 44 (|1D

LA LN LA LN

1MR12(1320(22723(25(|35|36 38

E FL'T‘—G—H |

(08)
N
(@)}
<o)
—
S

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

36

EXAMPLE #4 — INSERT 25

T,: Insert 25 20 A W C: Add 31
T,: Find 31 /

R
T;: Insert 33 [[5, 35 B

6 12 g3 w C>8 44 ||D

LA LN LA TN

1MR12(1320(22723(25(|35|36 38

E FL'T‘—G—H |

(08)
N
(@)}
<o)
—
S

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

36

EXAMPLE #4 — INSERT 25

T,: Insert 25 20 A W C: Add 31
T,: Find 31 /

R
T;: Insert 33 [[5, 35 B

6 12 §3 31 C>8 44 (|1D

AN LA TN

1111213120 (22423 |25\ (35|36 H{ 38
E FLX,L@_H |

31

(08)
N
(@)}
<o)
—
S

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

T;: Insert 25
T,: Find 31
T;: Insert 33

A

/

10

36

EXAMPLE #4 — INSERT 25

W C: Add 31

B

12 i}é?) 31

N
J

w
N

£SCMU-DB

15-445/645 (Fall 2020)

35(3638 4}14

Ac—H |

1133

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

VERSIONED LATCH COUPLING

Optimistic crabbing scheme where writers are not
blocked on readers.

Every node now has a version number (counter).

— Writers increment counter when they acquire latch.

— Readers proceed if a node’s latch is available but then do
not acquire it.

— It then checks whether the latch’s counter has changed
from when it checked the latch.

Relies on epoch GC to ensure pointers are valid.

| THE ART OF PRACTICAL SYNCHRONIZATION
DAMON 2016

S=CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/07-oltpindexes2/leis-damon2016.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/07-oltpindexes2/leis-damon2016.pdf

VERSIONED LATCHES: SEARCH 44

T,: Find 44
vall 19 B vall 35 C
V3|l 6 DLv4{| 12 E Lv6|| 23 F L3} 38 || 44 ||G

N N N

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

38

VERSIONED LATCHES: SEARCH 44

T,: Find 44 @A
v3l| 20 A«
vall 19 B vall 35 C
voll 6 DLv4}| 12 ELv6lf 23 F Lv3|| 38 || 44
. N N

§=CMU-DB
15-445/645 (Fall 2020)

A: Read v3
A: Examine Node

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

38

VERSIONED LATCHES: SEARCH 44

A: Read v3
@A A: Examine Node

St
: Recheck v3
@B B: Examine Node

T,: Find 44
v3l| 20 A
vall 10 B V|l 35 C«
voll 6 DLv4}| 12 ELv6lf 23 F V3|38 (|44 |G
. N N

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

38

VERSIONED LATCHES: SEARCH 44

. T A: Read v3
Tl’ Find 44 @A A: Examine Node

v3|| 20 A B: Read v5
@B A: Recheck v3
B: Examine Node

vall 19 B Vo]l 35 C @C % gggﬂe\i%
/ \ /’ \ C: Examine Node
voll 6 DLv41} 12 E Lv6ff 23 F Lvf| 38 || 44 ||G «

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

/

38

VERSIONED LATCHES: SEARCH 44
T, Find 44

v4

A\

@A

@B

N\ ¢ N\
V3|l 6 DLv4]| 12 E L6}l 23 F LvO|| 38 || 44
N2 N N
@CMU-DB

15-445/645 (Fall 2020)

A: Read v3
A: Examine Node

B: Read v5
A: Recheck v3
B: Examine Node

“LO.REWIND Joac

C: Read v9
B: Recheck v5
C: Examine Node

c 4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

38

VERSIONED LATCHES: SEARCH 44

T A: Read v3
Tl’ Find 44 @A A: Examine Node
=15 I R%eaixﬁk 3
: Recheck v
@B B: Examine Node
vall 19 B vall 35 C @C
voll 6 DLv41} 12 E Lv6ff 23 F L3y 38 || 44 G«
N2 N N
§=CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

38

VERSIONED LATCHES: SEARCH 44

»vs

T,: Find 44
v3 20
vall 19 B
/ /\\‘ N
v5 6 DLv4l| 12 E Lv6
NG N

§=CMU-DB
15-445/645 (Fall 2020)

A: Read v3
@A A: Examine Node

St
: Recheck v3
@B B: Examine Node

2;4

446«

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

38

VERSIONED LATCHES: SEARCH 44

A: Read v3

Tl: Find 44 @A A: Examine Node
| BT PO g%eac}llVSk 3
: Recheck v
@B B: Examine Node
va|[70 B » C: Read v9
/ /\\ —
vofl 6 DLv4}f 12 E Lv6 G «
N2 N
§=CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

38

VERSIONED LATCHES: SEARCH 44

A: Read v3

Tl: Find 44 @A A: Examine Node
| BT PO g%eac}llVSk 3
: Recheck v
@B B: Examine Node
va|[70 B » C: Read v9
/ /\\ —
vofl 6 DLv4}f 12 E Lv6 G «
N2 N
§=CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

38

VERSIONED LATCHES: SEARCH 44
T, Find 44

»

@A

A: Read v3
A: Examine Node

B: Read v5

@B A: Recheck v3

B: Examine Node

C: Read v9

@C B: Recheck v5

v31| 20
vall 19 B
/ /\\. —
v5 6 DLv4l| 12 E V6
N2 N
§=CMU-DB

15-445/645 (Fall 2020)

44

c 4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

38

VERSIONED LATCHES: SEARCH 44

A: Read v3
@A A: Examine Node

A B: Read v5

@B A: Recheck v3

B: Examine Node

»

T;: Find 44
T,: Insert 31 31T 20
vall 19 B
/ /\\‘ N
v5 6 DLv4l| 12 E Lv6
N N

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CONCLUSION

Making a data structure thread-safe is notoriously
difficult in practice.

We focused on B+Trees but the same high-level
techniques are applicable to other data structures.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

NEXT CLASS

We are finally going to discuss how to execute
some queries...

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

PROJECT #2

You will build a thread-safe B+tree.

— Page Layout +
— Data Structure

— STL Iterator
— Latch Crabbing

We define the API for you. You need to
provide the method implementations.

https://15445.courses.cs.cmu.edu/fall2020/project2/

£SCMU-DB

15-445/645 (Fall 2020)

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2018/project2/

CHECKPOINT #1

Due Date: October 11" @ 11:59pm
Total Project Grade: 40%

Page Layouts

— How each node will store its key/values in a page.
— You only need to support unique keys.

Data Structure (Find + Insert)
— Support point queries (single key).
— Support inserts with node splitting.
— Does not need to be thread-safe.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CHECKPOINT #2

Due Date: October 25" @ 11:59pm
Total Project Grade: 60%

Data Structure (Deletion)
— Support removal of keys with sibling stealing + merging.

Index Iterator
— Create a STL iterator for range scans.

Concurrent Index

— Implement latch crabbing/coupling.
§=CMuU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

DEVELOPMENT HINTS

Follow the textbook semantics and algorithm:s.

Set the page size to be small (e.g., 512B) when you
first start so that you can see more splits/merges.

Make sure that you protect the internal B+Tree
root_page_id member.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

THINGS TO NOTE

Do not change any other files in the system.

Make sure you pull the latest changes from the
main BusTub repo.

Post your questions on Piazza or come to TA
office hours.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

PLAGIARISM WARNING

Your project implementation must be

your own work.
— You may not copy source code from other
groups or the web.

— Do not publish your implementation on
Github. N

Plagiarism will not be tolerated.
See CMU's Policy on Academic
Integrity for additional information.

§=CMU-DB

15-445/645 (Fall 2020)

46

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
http://www.cmu.edu/policies/documents/Academic Integrity.htm

47

COMPARE-AND-SWAP

Atomic instruction that compares contents of a

memory location M to a given value V

— [f values are equal, installs new given value V'’ in M
— Otherwise operation fails

New
Address Value

20 __sync_bool_compare_and_swap(&V, 20, 30)

Compare
S2CMU-DB Value

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

COMPARE-AND-SWAP

Atomic instruction that compares contents of a

memory location M to a given value V

— [f values are equal, installs new given value V'’ in M
— Otherwise operation fails

New
Address Value

30 __sync_bool_compare_and_swap(&V, 20, 30)

Compare
S2CMU-DB Value

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

