
Intro to Database Systems

15-445/15-645

Fall 2020

Andy Pavlo
Computer Science
Carnegie Mellon UniversityAP

09 Index Concurrency
Control

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2020
https://15445.courses.cs.cmu.edu/fall2019/
http://www.cs.cmu.edu/~pavlo/
http://www.cs.cmu.edu/~pavlo/

15-445/645 (Fall 2020)

ADMINISTRIVIA

Homework #2 is due Sunday Oct 4th

Project #2 is now released:
→ Checkpoint #1: Due Sunday Oct 11th

→ Checkpoint #2: Due Sunday Oct 25th

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

OBSERVATION

We assumed that all the data structures that we
have discussed so far are single-threaded.

But we need to allow multiple threads to safely
access our data structures to take advantage of
additional CPU cores and hide disk I/O stalls.

3

They Don't Do This!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://voltdb.com/
https://redis.io/

15-445/645 (Fall 2020)

CONCURRENCY CONTROL

A concurrency control protocol is the method
that the DBMS uses to ensure "correct" results for
concurrent operations on a shared object.

A protocol's correctness criteria can vary:
→ Logical Correctness: Can a thread see the data that it is

supposed to see?
→ Physical Correctness: Is the internal representation of

the object sound?

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TODAY'S AGENDA

Latches Overview

Hash Table Latching

B+Tree Latching

Leaf Node Scans

Delayed Parent Updates

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

LOCKS VS. L ATCHES

Locks
→ Protects the database's logical contents from other txns.
→ Held for txn duration.
→ Need to be able to rollback changes.

Latches
→ Protects the critical sections of the DBMS's internal data

structure from other threads.
→ Held for operation duration.
→ Do not need to be able to rollback changes.

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

LOCKS VS. L ATCHES

7

Locks Latches

Separate… User transactions Threads

Protect… Database Contents In-Memory Data Structures

During… Entire Transactions Critical Sections

Modes… Shared, Exclusive, Update,
Intention

Read, Write

Deadlock Detection & Resolution Avoidance

…by… Waits-for, Timeout, Aborts Coding Discipline

Kept in… Lock Manager Protected Data Structure
Source: Goetz Graefe

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/06-indexes/a16-graefe.pdf

15-445/645 (Fall 2020)

LOCKS VS. L ATCHES

7

Locks Latches

Separate… User transactions Threads

Protect… Database Contents In-Memory Data Structures

During… Entire Transactions Critical Sections

Modes… Shared, Exclusive, Update,
Intention

Read, Write

Deadlock Detection & Resolution Avoidance

…by… Waits-for, Timeout, Aborts Coding Discipline

Kept in… Lock Manager Protected Data Structure
Source: Goetz Graefe

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/06-indexes/a16-graefe.pdf
https://15445.courses.cs.cmu.edu/fall2019/schedule.html#oct-23-2019

15-445/645 (Fall 2020)

L ATCH MODES

Read Mode
→ Multiple threads can read the same object

at the same time.
→ A thread can acquire the read latch if

another thread has it in read mode.

Write Mode
→ Only one thread can access the object.
→ A thread cannot acquire a write latch if

another thread holds the latch in any
mode.

8

Read Write

Read ✔ X

Write X X

Compatibility Matrix

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

L ATCH IMPLEMENTATIONS

Blocking OS Mutex

Test-and-Set Spinlock

Reader-Writer Locks

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

L ATCH IMPLEMENTATIONS

Approach #1: Blocking OS Mutex
→ Simple to use
→ Non-scalable (about 25ns per lock/unlock invocation)
→ Example: std::mutex

10

std::mutex m;
⋮

m.lock();
// Do something special...
m.unlock();

pthread_mutex_t

futex

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html

15-445/645 (Fall 2020)

L ATCH IMPLEMENTATIONS

Approach #1: Blocking OS Mutex
→ Simple to use
→ Non-scalable (about 25ns per lock/unlock invocation)
→ Example: std::mutex

10

std::mutex m;
⋮

m.lock();
// Do something special...
m.unlock();

pthread_mutex_t

futex

Userspace Latch

OS Latch

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html

15-445/645 (Fall 2020)

L ATCH IMPLEMENTATIONS

Approach #1: Blocking OS Mutex
→ Simple to use
→ Non-scalable (about 25ns per lock/unlock invocation)
→ Example: std::mutex

10

std::mutex m;
⋮

m.lock();
// Do something special...
m.unlock();

pthread_mutex_t

futex

Userspace Latch

OS Latch

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html

15-445/645 (Fall 2020)

L ATCH IMPLEMENTATIONS

Approach #2: Test-and-Set Spin Latch (TAS)
→ Very efficient (single instruction to latch/unlatch)
→ Non-scalable, not cache friendly, not OS friendly.
→ Example: std::atomic<T>

11

std::atomic_flag latch;
⋮

while (latch.test_and_set(…)) {
// Retry? Yield? Abort?

}

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

L ATCH IMPLEMENTATIONS

Approach #2: Test-and-Set Spin Latch (TAS)
→ Very efficient (single instruction to latch/unlatch)
→ Non-scalable, not cache friendly, not OS friendly.
→ Example: std::atomic<T>

11

std::atomic_flag latch;
⋮

while (latch.test_and_set(…)) {
// Retry? Yield? Abort?

}

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

L ATCH IMPLEMENTATIONS

Approach #2: Test-and-Set Spin Latch (TAS)
→ Very efficient (single instruction to latch/unlatch)
→ Non-scalable, not cache friendly, not OS friendly.
→ Example: std::atomic<T>

11

std::atomic_flag latch;
⋮

while (latch.test_and_set(…)) {
// Retry? Yield? Abort?

}

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://www.realworldtech.com/forum/?threadid=189711&curpostid=189723
https://www.realworldtech.com/forum/?threadid=189711&curpostid=189723

15-445/645 (Fall 2020)

L ATCH IMPLEMENTATIONS

Choice #3: Reader-Writer Locks
→ Allows for concurrent readers.
→ Must manage read/write queues to avoid starvation.
→ Can be implemented on top of spinlocks.

12

read write

Latch

=0

=0

=0

=0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

L ATCH IMPLEMENTATIONS

Choice #3: Reader-Writer Locks
→ Allows for concurrent readers.
→ Must manage read/write queues to avoid starvation.
→ Can be implemented on top of spinlocks.

12

read write

Latch

=0

=0

=0

=0

=1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

L ATCH IMPLEMENTATIONS

Choice #3: Reader-Writer Locks
→ Allows for concurrent readers.
→ Must manage read/write queues to avoid starvation.
→ Can be implemented on top of spinlocks.

12

read write

Latch

=0

=0

=0

=0

=1=2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

L ATCH IMPLEMENTATIONS

Choice #3: Reader-Writer Locks
→ Allows for concurrent readers.
→ Must manage read/write queues to avoid starvation.
→ Can be implemented on top of spinlocks.

12

read write

Latch

=0

=0

=0

=0

=1=2

=1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

L ATCH IMPLEMENTATIONS

Choice #3: Reader-Writer Locks
→ Allows for concurrent readers.
→ Must manage read/write queues to avoid starvation.
→ Can be implemented on top of spinlocks.

12

read write

Latch

=0

=0

=0

=0

=1=2

=1=1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

HASH TABLE L ATCHING

Easy to support concurrent access due to the
limited ways threads access the data structure.
→ All threads move in the same direction and only access a

single page/slot at a time.
→ Deadlocks are not possible.

To resize the table, take a global write latch on the
entire table (i.e., in the header page).

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

HASH TABLE L ATCHING

Approach #1: Page Latches
→ Each page has its own reader-write latch that protects its

entire contents.
→ Threads acquire either a read or write latch before they

access a page.

Approach #2: Slot Latches
→ Each slot has its own latch.
→ Can use a single mode latch to reduce meta-data and

computational overhead.

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

| valD

| valA

| valC

HASH TABLE PAGE L ATCHES

15

| valB

hash(D)
T1: Find D

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

| valD

| valA

| valC

HASH TABLE PAGE L ATCHES

15

| valB

R
hash(D)
T1: Find D

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

| valD

| valA

| valC

HASH TABLE PAGE L ATCHES

15

| valB

R
hash(D)
T1: Find D

hash(E)
T2: Insert E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

| valD

| valA

| valC

HASH TABLE PAGE L ATCHES

15

| valB

R
hash(D)
T1: Find D

hash(E)
T2: Insert E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

| valD

| valA

| valC

HASH TABLE PAGE L ATCHES

15

| valB

R
hash(D)
T1: Find D

hash(E)
T2: Insert E

0

1

2

It’s safe to release the
latch on Page #1.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

| valD

| valA

| valC

HASH TABLE PAGE L ATCHES

15

| valB

hash(D)
T1: Find D

R

hash(E)
T2: Insert E

0

1

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

| valD

| valA

| valC

HASH TABLE PAGE L ATCHES

15

| valB

hash(D)
T1: Find D

R

hash(E)
T2: Insert E

W

0

1

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

| valD

| valA

| valC

HASH TABLE PAGE L ATCHES

15

| valB

hash(D)
T1: Find D

hash(E)
T2: Insert E

W

0

1

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

| valD

| valA

| valC

HASH TABLE PAGE L ATCHES

15

| valB

hash(D)
T1: Find D

hash(E)
T2: Insert E

0

1

2

W

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

| valD

| valE

| valA

| valC

HASH TABLE PAGE L ATCHES

15

| valB

hash(D)
T1: Find D

hash(E)
T2: Insert E

0

1

2

W

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

| valD

| valA

| valC

HASH TABLE SLOT L ATCHES

16

| valB
0

1

2

hash(D)
T1: Find D

hash(E)
T2: Insert E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

| valD

| valA

| valC

HASH TABLE SLOT L ATCHES

16

| valB

R

0

1

2

hash(D)
T1: Find D

hash(E)
T2: Insert E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

| valD

| valA

| valC

HASH TABLE SLOT L ATCHES

16

| valB

R

0

1

2

hash(D)
T1: Find D

hash(E)
T2: Insert E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

| valD

| valA

| valC

HASH TABLE SLOT L ATCHES

16

| valB

R

0

1

2

W

hash(D)
T1: Find D

hash(E)
T2: Insert E

It’s safe to release the
latch on A

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

| valD

| valA

| valC

HASH TABLE SLOT L ATCHES

16

| valB
0

1

2

W

hash(D)
T1: Find D

hash(E)
T2: Insert E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

| valD

| valA

| valC

HASH TABLE SLOT L ATCHES

16

| valB
0

1

2

W

hash(D)
T1: Find D

hash(E)
T2: Insert E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

| valD

| valA

| valC

HASH TABLE SLOT L ATCHES

16

| valB
0

1

2

W

R

hash(D)
T1: Find D

hash(E)
T2: Insert E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

| valD

| valE

| valA

| valC

HASH TABLE SLOT L ATCHES

16

| valB
0

1

2

R

W

hash(D)
T1: Find D

hash(E)
T2: Insert E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

| valD

| valE

| valA

| valC

HASH TABLE SLOT L ATCHES

16

| valB

R

0

1

2W

hash(D)
T1: Find D

hash(E)
T2: Insert E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

B+TREE CONCURRENCY CONTROL

We want to allow multiple threads to read and
update a B+Tree at the same time.

We need to protect from two types of problems:
→ Threads trying to modify the contents of a node at the

same time.
→ One thread traversing the tree while another thread

splits/merges nodes.

17

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38

B+TREE MULTI-THREADED EXAMPLE

18

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

T1: Delete 44

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38

B+TREE MULTI-THREADED EXAMPLE

18

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

T1: Delete 44

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38

B+TREE MULTI-THREADED EXAMPLE

18

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

T1: Delete 44

41

Rebalance!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38

B+TREE MULTI-THREADED EXAMPLE

18

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

T1: Delete 44
T2: Find 41

41

Rebalance!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38

B+TREE MULTI-THREADED EXAMPLE

18

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

T1: Delete 44
T2: Find 41

41

Rebalance!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38

B+TREE MULTI-THREADED EXAMPLE

18

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

T1: Delete 44
T2: Find 41

41

Rebalance!

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38

B+TREE MULTI-THREADED EXAMPLE

18

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

T1: Delete 44
T2: Find 41

41

Rebalance!

41

???

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

L ATCH CRABBING/COUPLING

Protocol to allow multiple threads to
access/modify B+Tree at the same time.

Basic Idea:
→ Get latch for parent.
→ Get latch for child
→ Release latch for parent if “safe”.

A safe node is one that will not split or merge
when updated.
→ Not full (on insertion)
→ More than half-full (on deletion)

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

L ATCH CRABBING/COUPLING

Find: Start at root and go down; repeatedly,
→ Acquire R latch on child
→ Then unlatch parent

Insert/Delete: Start at root and go down,
obtaining W latches as needed. Once child is
latched, check if it is safe:
→ If child is safe, release all latches on ancestors.

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

EXAMPLE #1 FIND 38

21

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 38 44

B

C D

E F G H I

3510

R
A

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

EXAMPLE #1 FIND 38

21

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 38 44

B

C D

E F G H I

3510

R

R

It is now safe to release
the latch on A.

A

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

EXAMPLE #1 FIND 38

21

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 38 44

B

C D

E F G H I

3510
R

A

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

EXAMPLE #1 FIND 38

21

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 38 44

B

C D

E F G H I

3510

R

A

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

EXAMPLE #1 FIND 38

21

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 38 44

B

C D

E F G H I

3510

R

A

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

EXAMPLE #1 FIND 38

21

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 38 44

B

C D

E F G H I

3510

A

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38 41

EXAMPLE #2 DELETE 38

22

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38 41

EXAMPLE #2 DELETE 38

22

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

W

We may need to coalesce B, so
we can’t release the latch on A.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38 41

EXAMPLE #2 DELETE 38

22

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

W

W

We know that D will not
merge with C, so it is safe to
release latches on A and B.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38 41

EXAMPLE #2 DELETE 38

22

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

We know that D will not
merge with C, so it is safe to
release latches on A and B.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38 41

EXAMPLE #2 DELETE 38

22

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38 41

EXAMPLE #2 DELETE 38

22

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38 41

EXAMPLE #3 INSERT 45

23

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44 45

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

W

We know that if D needs to
split, B has room so it is safe

to release the latch on A.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38 41

EXAMPLE #3 INSERT 45

23

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44 45

20

6 12 23 38 44

A

B

C D

E F G H I

3510
W

W

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38 41

EXAMPLE #3 INSERT 45

23

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44 45

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

Node I will not split, so we
can release B+D.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38 41

EXAMPLE #3 INSERT 45

23

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44 45

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

Node I will not split, so we
can release B+D.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38 41

EXAMPLE #4 INSERT 25

24

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

W

W

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38 41

EXAMPLE #4 INSERT 25

24

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510
W

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38 41

EXAMPLE #4 INSERT 25

24

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510
W

W

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38 41

EXAMPLE #4 INSERT 25

24

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

W

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38 41

EXAMPLE #4 INSERT 25

24

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

W

W

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38 41

EXAMPLE #4 INSERT 25

24

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

W

W
25

We need to split F, so we need to
hold the latch on its parent node.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38 41

EXAMPLE #4 INSERT 25

24

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

W

W
25

We need to split F, so we need to
hold the latch on its parent node.

31 J

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

OBSERVATION

What was the first step that all the update
examples did on the B+Tree?

Taking a write latch on the root every time
becomes a bottleneck with higher concurrency.

25

20 A
W

Delete 38

20 A
W

Insert 45

20 A
W

Insert 25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

BET TER L ATCHING ALGORITHM

Most modifications to a B+Tree will
not require a split or merge.

Instead of assuming that there will be
a split/merge, optimistically traverse
the tree using read latches.

If you guess wrong, repeat traversal
with the pessimistic algorithm.

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://link.springer.com/article/10.1007/BF00263762

15-445/645 (Fall 2020)

BET TER L ATCHING ALGORITHM

Search: Same as before.

Insert/Delete:
→ Set latches as if for search, get to leaf, and set W latch on

leaf.
→ If leaf is not safe, release all latches, and restart thread

using previous insert/delete protocol with write latches.

This approach optimistically assumes that only leaf
node will be modified; if not, R latches set on the
first pass to leaf are wasteful.

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #2 DELETE 38

28

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

R

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #2 DELETE 38

28

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510
R

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #2 DELETE 38

28

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

R

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #2 DELETE 38

28

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

R

W

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #2 DELETE 38

28

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

H will not need to coalesce, so
we’re safe!

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #2 DELETE 38

28

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

H will not need to coalesce, so
we’re safe!

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #4 INSERT 25

29

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

We need to split F, so we
have to restart and re-

execute like before.

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

15-445/645 (Fall 2020)

OBSERVATION

The threads in all the examples so far have
acquired latches in a "top-down" manner.
→ A thread can only acquire a latch from a node that is

below its current node.
→ If the desired latch is unavailable, the thread must wait

until it becomes available.

But what if we want to move from one leaf node
to another leaf node?

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

LEAF NODE SCAN EXAMPLE #1

31

A

B

3

1 2 3 4

C

T1: Find Keys < 4
R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

LEAF NODE SCAN EXAMPLE #1

31

A

B

3

1 2 3 4

C

T1: Find Keys < 4

R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

LEAF NODE SCAN EXAMPLE #1

31

A

B

3

1 2 3 4

C

T1: Find Keys < 4

R

Do not release latch on C
until thread has latch on B

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

LEAF NODE SCAN EXAMPLE #1

31

A

B

3

1 2 3 4

C

T1: Find Keys < 4

R R

Do not release latch on C
until thread has latch on B

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

LEAF NODE SCAN EXAMPLE #1

31

A

B

3

1 2 3 4

C

T1: Find Keys < 4

R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

LEAF NODE SCAN EXAMPLE #2

32

A

B

3

1 2 3 4

C

T1: Find Keys < 4

T2: Find Keys > 1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

LEAF NODE SCAN EXAMPLE #2

32

A

B

3

1 2 3 4

C

T1: Find Keys < 4

T2: Find Keys > 1
R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

LEAF NODE SCAN EXAMPLE #2

32

A

B

3

1 2 3 4

C

T1: Find Keys < 4

T2: Find Keys > 1
R

R R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

LEAF NODE SCAN EXAMPLE #2

32

A

B

3

1 2 3 4

C

T1: Find Keys < 4

T2: Find Keys > 1

R R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

LEAF NODE SCAN EXAMPLE #2

32

A

B

3

1 2 3 4

C

T1: Find Keys < 4

T2: Find Keys > 1

R R

Both T1 and T2 now hold
this read latch.

Both T1 and T2 now hold
this read latch.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

LEAF NODE SCAN EXAMPLE #2

32

A

B

3

1 2 3 4

C

T1: Find Keys < 4

T2: Find Keys > 1

R R

Both T1 and T2 now hold
this read latch.

Both T1 and T2 now hold
this read latch.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

LEAF NODE SCAN EXAMPLE #2

32

A

B

3

1 2 3 4

C

T1: Find Keys < 4

T2: Find Keys > 1

R R

Only T1 holds
this read latch.

Only T2 holds
this read latch.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

LEAF NODE SCAN EXAMPLE #3

33

A

B

3

1 2 3 4

C

T1: Delete 4
T2: Find Keys > 1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

LEAF NODE SCAN EXAMPLE #3

33

A

B

3

1 2 3 4

C

T1: Delete 4
T2: Find Keys > 1R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

LEAF NODE SCAN EXAMPLE #3

33

A

B

3

1 2 3 4

C

T1: Delete 4
T2: Find Keys > 1

R W

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

LEAF NODE SCAN EXAMPLE #3

33

A

B

3

1 2 3 4

C

T1: Delete 4
T2: Find Keys > 1

R W

T2 cannot acquire
the read latch on C

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

LEAF NODE SCAN EXAMPLE #3

33

A

B

3

1 2 3 4

C

T1: Delete 4
T2: Find Keys > 1

R W

T2 does not know
what T1 is doing…

T2 cannot acquire
the read latch on C

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

LEAF NODE SCAN EXAMPLE #3

33

A

B

3

1 2 3 4

C

T1: Delete 4
T2: Find Keys > 1

R W

T2 does not know
what T1 is doing…

T2 cannot acquire
the read latch on C

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

LEAF NODE SCANS

Latches do not support deadlock detection or
avoidance. The only way we can deal with this
problem is through coding discipline.

The leaf node sibling latch acquisition protocol
must support a "no-wait" mode.

The DBMS's data structures must cope with failed
latch acquisitions.

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

DEL AYED PARENT UPDATES

Every time a leaf node overflows, we must update
at least three nodes.
→ The leaf node being split.
→ The new leaf node being created.
→ The parent node.

Blink-Tree Optimization: When a leaf node
overflows, delay updating its parent node.

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38 41

EXAMPLE #4 INSERT 25

36

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

R

R

T1: Insert 25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38 41

EXAMPLE #4 INSERT 25

36

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510
R

R

T1: Insert 25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38 41

EXAMPLE #4 INSERT 25

36

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

R

T1: Insert 25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38 41

EXAMPLE #4 INSERT 25

36

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

W

T1: Insert 25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38 41

EXAMPLE #4 INSERT 25

36

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

W

Add the new leaf node as a
sibling to F, but do not update C

T1: Insert 25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38 41

EXAMPLE #4 INSERT 25

36

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

W
25

31

Add the new leaf node as a
sibling to F, but do not update C

T1: Insert 25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38 41

EXAMPLE #4 INSERT 25

36

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

25

31

Update C the next time that a
thread takes a write latch on it.

T1: Insert 25 C: Add 31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38 41

EXAMPLE #4 INSERT 25

36

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

25

31

T1: Insert 25

T2: Find 31

C: Add 31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38 41

EXAMPLE #4 INSERT 25

36

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

25

31

T1: Insert 25

T2: Find 31

C: Add 31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38 41

EXAMPLE #4 INSERT 25

36

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

25

31

T1: Insert 25

T2: Find 31

T3: Insert 33

C: Add 31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38 41

EXAMPLE #4 INSERT 25

36

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

R

25

31

T1: Insert 25

T2: Find 31

T3: Insert 33

C: Add 31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38 41

EXAMPLE #4 INSERT 25

36

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510
R

25

31

T1: Insert 25

T2: Find 31

T3: Insert 33

C: Add 31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38 41

EXAMPLE #4 INSERT 25

36

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510
R

25

31

W

T1: Insert 25

T2: Find 31

T3: Insert 33

C: Add 31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38 41

EXAMPLE #4 INSERT 25

36

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510
R

25

31

W

T1: Insert 25

T2: Find 31

T3: Insert 33

C: Add 31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

38 41

EXAMPLE #4 INSERT 25

36

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510
R

25

31

W

T1: Insert 25

T2: Find 31

T3: Insert 33

33

C: Add 31

W

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

VERSIONED L ATCH COUPLING

Optimistic crabbing scheme where writers are not
blocked on readers.

Every node now has a version number (counter).
→ Writers increment counter when they acquire latch.
→ Readers proceed if a node’s latch is available but then do

not acquire it.
→ It then checks whether the latch’s counter has changed

from when it checked the latch.

Relies on epoch GC to ensure pointers are valid.

37

THE ART OF PRACTICAL SYNCHRONIZATION
DAMON 2016

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/07-oltpindexes2/leis-damon2016.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/07-oltpindexes2/leis-damon2016.pdf

15-445/645 (Fall 2020)

VERSIONED L ATCHES: SEARCH 44

38

A

B

D G

20

10 35

6 12 23 38 44

C

E F

v3

v5

v6 v9v4

v4

v5

T1: Find 44

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

VERSIONED L ATCHES: SEARCH 44

38

A

B

D G

20

10 35

6 12 23 38 44

C

E F

A: Read v3
A: Examine Node

v3

v5

v6 v9v4

v4

v5

@AT1: Find 44

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

VERSIONED L ATCHES: SEARCH 44

38

A

B

D G

20

10 35

6 12 23 38 44

C

E F

A: Read v3
A: Examine Node

v3

v5

v6 v9v4

v4

v5

B: Read v5
A: Recheck v3
B: Examine Node

@A

@B

T1: Find 44

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

VERSIONED L ATCHES: SEARCH 44

38

A

B

D G

20

10 35

6 12 23 38 44

C

E F

A: Read v3
A: Examine Node

v3

v5

v6 v9v4

v4

v5

B: Read v5
A: Recheck v3
B: Examine Node

C: Read v9
B: Recheck v5
C: Examine Node

@A

@B

@C

T1: Find 44

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

VERSIONED L ATCHES: SEARCH 44

38

A

B

D G

20

10 35

6 12 23 38 44

C

E F

A: Read v3
A: Examine Node

v3

v5

v6 v9v4

v4

v5

B: Read v5
A: Recheck v3
B: Examine Node

C: Read v9
B: Recheck v5
C: Examine Node

@A

@B

@CREWIND

T1: Find 44

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

VERSIONED L ATCHES: SEARCH 44

38

A

B

D G

20

10 35

6 12 23 38 44

C

E F

A: Read v3
A: Examine Node

v3

v5

v6 v9v4

v4

v5

B: Read v5
A: Recheck v3
B: Examine Node

@A

@B

@C

T1: Find 44

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

VERSIONED L ATCHES: SEARCH 44

38

A

B

D G

20

10 35

6 12 23 38 44

C

E F

A: Read v3
A: Examine Node

v3

v5

v6 v9v4

v4

v5

B: Read v5
A: Recheck v3
B: Examine Node

@A

@B

@C

T1: Find 44

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

VERSIONED L ATCHES: SEARCH 44

38

A

B

D G

20

10 35

6 12 23 38 44

C

E F

A: Read v3
A: Examine Node

v3

v5

v6 v9v4

v4

v5

B: Read v5
A: Recheck v3
B: Examine Node

C: Read v9

@A

@B

@C

T1: Find 44

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

VERSIONED L ATCHES: SEARCH 44

38

A

B

D G

20

10 35

6 12 23 38 44

C

E F

A: Read v3
A: Examine Node

v3

v5

v6 v9v4

v4

v5

B: Read v5
A: Recheck v3
B: Examine Node

C: Read v9v6

@A

@B

@C

T1: Find 44

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

VERSIONED L ATCHES: SEARCH 44

38

A

B

D G

20

10 35

6 12 23 38 44

C

E F

A: Read v3
A: Examine Node

v3

v5

v6 v9v4

v4

v5

B: Read v5
A: Recheck v3
B: Examine Node

C: Read v9
B: Recheck v5v6

@A

@B

@C

T1: Find 44

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

VERSIONED L ATCHES: SEARCH 44

38

A

B

D G

20

10 35

6 12 23 38 44

C

E F

A: Read v3
A: Examine Node

v3

v5

v6 v9v4

v4

v5

B: Read v5
A: Recheck v3
B: Examine Node

C: Read v9
B: Recheck v5v6

@A

@B

@C

T1: Find 44

T2: Insert 31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CONCLUSION

Making a data structure thread-safe is notoriously
difficult in practice.

We focused on B+Trees but the same high-level
techniques are applicable to other data structures.

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

NEXT CL ASS

We are finally going to discuss how to execute
some queries…

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

PROJECT #2

You will build a thread-safe B+tree.
→ Page Layout
→ Data Structure
→ STL Iterator
→ Latch Crabbing

We define the API for you. You need to
provide the method implementations.

41

https://15445.courses.cs.cmu.edu/fall2020/project2/

+

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2018/project2/

15-445/645 (Fall 2020)

CHECKPOINT #1

Due Date: October 11th @ 11:59pm
Total Project Grade: 40%

Page Layouts
→ How each node will store its key/values in a page.
→ You only need to support unique keys.

Data Structure (Find + Insert)
→ Support point queries (single key).
→ Support inserts with node splitting.
→ Does not need to be thread-safe.

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CHECKPOINT #2

Due Date: October 25th @ 11:59pm
Total Project Grade: 60%

Data Structure (Deletion)
→ Support removal of keys with sibling stealing + merging.

Index Iterator
→ Create a STL iterator for range scans.

Concurrent Index
→ Implement latch crabbing/coupling.

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

DEVELOPMENT HINTS

Follow the textbook semantics and algorithms.

Set the page size to be small (e.g., 512B) when you
first start so that you can see more splits/merges.

Make sure that you protect the internal B+Tree
root_page_id member.

44

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

THINGS TO NOTE

Do not change any other files in the system.

Make sure you pull the latest changes from the
main BusTub repo.

Post your questions on Piazza or come to TA
office hours.

45

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

PL AGIARISM WARNING

Your project implementation must be
your own work.
→ You may not copy source code from other

groups or the web.
→ Do not publish your implementation on

Github.

Plagiarism will not be tolerated.
See CMU's Policy on Academic
Integrity for additional information.

46

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
http://www.cmu.edu/policies/documents/Academic Integrity.htm

15-445/645 (Fall 2020)

COMPARE-AND-SWAP

Atomic instruction that compares contents of a
memory location M to a given value V
→ If values are equal, installs new given value V’ in M
→ Otherwise operation fails

47

M
__sync_bool_compare_and_swap(&M, 20, 30)20

Compare
Value

Address
New

Value

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

COMPARE-AND-SWAP

Atomic instruction that compares contents of a
memory location M to a given value V
→ If values are equal, installs new given value V’ in M
→ Otherwise operation fails

47

M
__sync_bool_compare_and_swap(&M, 20, 30)30

Compare
Value

Address
New

Value

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

