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ADMINISTRIVIA

Homework #2 is due Sunday Oct 4th

Project #2 is now released:
→ Checkpoint #1: Due Sunday Oct 11th

→ Checkpoint #2: Due Sunday Oct 25th
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OBSERVATION

We assumed that all the data structures that we 
have discussed so far are single-threaded.

But we need to allow multiple threads to safely 
access our data structures to take advantage of 
additional CPU cores and hide disk I/O stalls.
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They Don't Do This!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://voltdb.com/
https://redis.io/


15-445/645 (Fall 2020)

CONCURRENCY CONTROL

A concurrency control protocol is the method 
that the DBMS uses to ensure "correct" results for 
concurrent operations on a shared object.

A protocol's correctness criteria can vary:
→ Logical Correctness: Can a thread see the data that it is 

supposed to see?
→ Physical Correctness: Is the internal representation of 

the object sound?
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TODAY'S  AGENDA

Latches Overview

Hash Table Latching

B+Tree Latching

Leaf Node Scans

Delayed Parent Updates

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

LOCKS VS.  L ATCHES

Locks
→ Protects the database's logical contents from other txns.
→ Held for txn duration.
→ Need to be able to rollback changes.

Latches
→ Protects the critical sections of the DBMS's internal data 

structure from other threads.
→ Held for operation duration.
→ Do not need to be able to rollback changes.
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LOCKS VS.  L ATCHES
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Locks Latches

Separate… User transactions Threads

Protect… Database Contents In-Memory Data Structures

During… Entire Transactions Critical Sections

Modes… Shared, Exclusive, Update, 
Intention

Read, Write

Deadlock Detection & Resolution Avoidance

…by… Waits-for, Timeout, Aborts Coding Discipline

Kept in… Lock Manager Protected Data Structure
Source: Goetz Graefe
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L ATCH MODES

Read Mode
→ Multiple threads can read the same object 

at the same time.
→ A thread can acquire the read latch if 

another thread has it in read mode.

Write Mode
→ Only one thread can access the object.
→ A thread cannot acquire a write latch if 

another thread holds the latch in any 
mode.
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Read Write

Read ✔ X

Write X X

Compatibility Matrix
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L ATCH IMPLEMENTATIONS

Blocking OS Mutex

Test-and-Set Spinlock

Reader-Writer Locks
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L ATCH IMPLEMENTATIONS

Approach #1: Blocking OS Mutex
→ Simple to use
→ Non-scalable (about 25ns per lock/unlock invocation)
→ Example: std::mutex
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std::mutex m;
⋮

m.lock();
// Do something special...
m.unlock();

pthread_mutex_t

futex
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L ATCH IMPLEMENTATIONS

Approach #2: Test-and-Set Spin Latch (TAS)
→ Very efficient (single instruction to latch/unlatch)
→ Non-scalable, not cache friendly, not OS friendly.
→ Example: std::atomic<T>

11

std::atomic_flag latch;
⋮

while (latch.test_and_set(…)) {
// Retry? Yield? Abort?

}
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L ATCH IMPLEMENTATIONS

Choice #3: Reader-Writer Locks
→ Allows for concurrent readers.
→ Must manage read/write queues to avoid starvation.
→ Can be implemented on top of spinlocks.

12

read write

Latch

=0

=0

=0

=0
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HASH TABLE L ATCHING

Easy to support concurrent access due to the 
limited ways threads access the data structure.
→ All threads move in the same direction and only access a 

single page/slot at a time.
→ Deadlocks are not possible.

To resize the table, take a global write latch on the 
entire table (i.e., in the header page).
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HASH TABLE L ATCHING

Approach #1: Page Latches
→ Each page has its own reader-write latch that protects its 

entire contents.
→ Threads acquire either a read or write latch before they 

access a page.

Approach #2: Slot Latches
→ Each slot has its own latch.
→ Can use a single mode latch to reduce meta-data and 

computational overhead.
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| valD
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HASH TABLE PAGE L ATCHES
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B+TREE CONCURRENCY CONTROL

We want to allow multiple threads to read and 
update a B+Tree at the same time.

We need to protect from two types of problems:
→ Threads trying to modify the contents of a node at the 

same time.
→ One thread traversing the tree while another thread 

splits/merges nodes.
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B+TREE MULTI-THREADED EXAMPLE
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L ATCH CRABBING/COUPLING

Protocol to allow multiple threads to 
access/modify B+Tree at the same time.

Basic Idea:
→ Get latch for parent.
→ Get latch for child
→ Release latch for parent if “safe”.

A safe node is one that will not split or merge 
when updated.
→ Not full (on insertion)
→ More than half-full (on deletion)
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L ATCH CRABBING/COUPLING

Find: Start at root and go down; repeatedly,
→ Acquire R latch on child
→ Then unlatch parent

Insert/Delete: Start at root and go down, 
obtaining W latches as needed. Once child is 
latched, check if it is safe:
→ If child is safe, release all latches on ancestors.
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EXAMPLE #1 FIND 38
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38 41
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W

We know that if D needs to 
split, B has room so it is safe 

to release the latch on A.
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EXAMPLE #3 INSERT 45
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Node I will not split, so we 
can release B+D.
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We need to split F, so we need to 
hold the latch on its parent node.
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EXAMPLE #4 INSERT 25

24

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20
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25

We need to split F, so we need to 
hold the latch on its parent node.
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OBSERVATION

What was the first step that all the update 
examples did on the B+Tree?

Taking a write latch on the root every time 
becomes a bottleneck with higher concurrency.

25

20 A
W

Delete 38

20 A
W

Insert 45

20 A
W

Insert 25
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BET TER L ATCHING ALGORITHM

Most modifications to a B+Tree will 
not require a split or merge.

Instead of assuming that there will be 
a split/merge, optimistically traverse 
the tree using read latches.

If you guess wrong, repeat traversal 
with the pessimistic algorithm.

26
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BET TER L ATCHING ALGORITHM

Search: Same as before.

Insert/Delete: 
→ Set latches as if for search, get to leaf, and set W latch on 

leaf.
→ If leaf is not safe, release all latches, and restart thread 

using previous insert/delete protocol with write latches.

This approach optimistically assumes that only leaf 
node will be modified; if not, R latches set on the 
first pass to leaf are wasteful.

27
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EXAMPLE #2 DELETE 38
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EXAMPLE #2 DELETE 38
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W

H will not need to coalesce, so 
we’re safe!
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EXAMPLE #2 DELETE 38

28

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44
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EXAMPLE #4 INSERT 25

29

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

We need to split F, so we 
have to restart and re-

execute like before.
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OBSERVATION

The threads in all the examples so far have 
acquired latches in a "top-down" manner.
→ A thread can only acquire a latch from a node that is 

below its current node.
→ If the desired latch is unavailable, the thread must wait 

until it becomes available.

But what if we want to move from one leaf node 
to another leaf node?

30
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LEAF NODE SCAN EXAMPLE #1

31
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1 2 3 4

C

T1: Find Keys < 4
R
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LEAF NODE SCAN EXAMPLE #1
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LEAF NODE SCAN EXAMPLE #1

31

A

B

3

1 2 3 4

C

T1: Find Keys < 4

R

Do not release latch on C 
until thread has latch on B
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LEAF NODE SCAN EXAMPLE #1
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T1: Find Keys < 4

R R

Do not release latch on C 
until thread has latch on B
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LEAF NODE SCAN EXAMPLE #1
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T1: Find Keys < 4
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LEAF NODE SCAN EXAMPLE #2

32
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T1: Find Keys < 4

T2: Find Keys > 1
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LEAF NODE SCAN EXAMPLE #2
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LEAF NODE SCAN EXAMPLE #2
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T1: Find Keys < 4

T2: Find Keys > 1
R

R R
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LEAF NODE SCAN EXAMPLE #2
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LEAF NODE SCAN EXAMPLE #2

32

A

B

3

1 2 3 4

C

T1: Find Keys < 4

T2: Find Keys > 1

R R

Both T1 and T2 now hold 
this read latch.

Both T1 and T2 now hold 
this read latch.
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LEAF NODE SCAN EXAMPLE #2
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R R

Both T1 and T2 now hold 
this read latch.
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LEAF NODE SCAN EXAMPLE #2
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1 2 3 4
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T1: Find Keys < 4

T2: Find Keys > 1

R R

Only T1 holds
this read latch.

Only T2 holds
this read latch.
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LEAF NODE SCAN EXAMPLE #3

33
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T1: Delete 4
T2: Find Keys > 1
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LEAF NODE SCAN EXAMPLE #3
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LEAF NODE SCAN EXAMPLE #3

33

A

B

3

1 2 3 4

C

T1: Delete 4
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LEAF NODE SCAN EXAMPLE #3
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B

3

1 2 3 4

C

T1: Delete 4
T2: Find Keys > 1

R W

T2 cannot acquire  
the read latch on C
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LEAF NODE SCAN EXAMPLE #3

33

A

B

3

1 2 3 4

C

T1: Delete 4
T2: Find Keys > 1

R W

T2 does not know 
what T1 is doing…

T2 cannot acquire  
the read latch on C
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LEAF NODE SCAN EXAMPLE #3

33

A

B

3

1 2 3 4

C

T1: Delete 4
T2: Find Keys > 1

R W

T2 does not know 
what T1 is doing…

T2 cannot acquire  
the read latch on C
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LEAF NODE SCANS

Latches do not support deadlock detection or 
avoidance. The only way we can deal with this 
problem is through coding discipline.

The leaf node sibling latch acquisition protocol 
must support a "no-wait" mode.

The DBMS's data structures must cope with failed 
latch acquisitions.

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

DEL AYED PARENT UPDATES

Every time a leaf node overflows, we must update 
at least three nodes.
→ The leaf node being split.
→ The new leaf node being created.
→ The parent node.

Blink-Tree Optimization: When a leaf node 
overflows, delay updating its parent node. 

35
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EXAMPLE #4 INSERT 25
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EXAMPLE #4 INSERT 25

36

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

W

Add the new leaf node as a 
sibling to F, but do not update C

T1: Insert 25
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EXAMPLE #4 INSERT 25
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20
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31

Add the new leaf node as a 
sibling to F, but do not update C

T1: Insert 25
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38 41

EXAMPLE #4 INSERT 25

36

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

25

31

Update C the next time that a 
thread takes a write latch on it.

T1: Insert 25 C: Add 31
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20
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T1: Insert 25

T2: Find 31

C: Add 31
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VERSIONED L ATCH COUPLING

Optimistic crabbing scheme where writers are not 
blocked on readers.

Every node now has a version number (counter).
→ Writers increment counter when they acquire latch.
→ Readers proceed if a node’s latch is available but then do 

not acquire it.
→ It then checks whether the latch’s counter has changed 

from when it checked the latch.

Relies on epoch GC to ensure pointers are valid.

37

THE ART OF PRACTICAL SYNCHRONIZATION
DAMON 2016
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VERSIONED L ATCHES:  SEARCH 44
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VERSIONED L ATCHES:  SEARCH 44
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CONCLUSION

Making a data structure thread-safe is notoriously 
difficult in practice.

We focused on B+Trees but the same high-level 
techniques are applicable to other data structures.
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NEXT CL ASS

We are finally going to discuss how to execute 
some queries…
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PROJECT #2

You will build a thread-safe B+tree.
→ Page Layout
→ Data Structure
→ STL Iterator
→ Latch Crabbing

We define the API for you. You need to 
provide the method implementations.

41
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CHECKPOINT #1

Due Date: October 11th @ 11:59pm
Total Project Grade: 40%

Page Layouts
→ How each node will store its key/values in a page.
→ You only need to support unique keys.

Data Structure (Find + Insert)
→ Support point queries (single key).
→ Support inserts with node splitting.
→ Does not need to be thread-safe.
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CHECKPOINT #2

Due Date: October 25th @ 11:59pm
Total Project Grade: 60%

Data Structure (Deletion)
→ Support removal of keys with sibling stealing + merging.

Index Iterator
→ Create a STL iterator for range scans.

Concurrent Index 
→ Implement latch crabbing/coupling.
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DEVELOPMENT HINTS

Follow the textbook semantics and algorithms.

Set the page size to be small (e.g., 512B) when you 
first start so that you can see more splits/merges.

Make sure that you protect the internal B+Tree
root_page_id member.
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THINGS TO NOTE

Do not change any other files in the system.

Make sure you pull the latest changes from the 
main BusTub repo.

Post your questions on Piazza or come to TA 
office hours.
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PL AGIARISM WARNING

Your project implementation must be 
your own work.
→ You may not copy source code from other 

groups or the web.
→ Do not publish your implementation on 

Github.

Plagiarism will not be tolerated.
See CMU's Policy on Academic 
Integrity for additional information. 
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COMPARE-AND-SWAP

Atomic instruction that compares contents of a 
memory location M to a given value V
→ If values are equal, installs new given value V’ in M
→ Otherwise operation fails

47

M
__sync_bool_compare_and_swap(&M, 20, 30)20
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