
Intro to Database Systems

15-445/15-645

Fall 2020

Andy Pavlo
Computer Science
Carnegie Mellon UniversityAP

14 Query Planning
Part I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2020
https://15445.courses.cs.cmu.edu/fall2019/
http://www.cs.cmu.edu/~pavlo/
http://www.cs.cmu.edu/~pavlo/

15-445/645 (Fall 2020)

ADMINISTRIVIA

Mid-Term Exam is Wed Oct 21st

→ Session #1: 9:00am ET
→ Session #2: 3:20pm ET
→ See mid-term exam guide for more info.

Project #2 is due Sun Oct 25th @ 11:59pm

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2020/midterm-guide.html

15-445/645 (Fall 2020)

UPCOMING DATABASE TALKS

FoundationDB Testing
→ Monday Oct 19th @ 5pm ET

Datometry
→ Monday Oct 26th @ 5pm ET

MySQL Query Optimizer
→ Monday Nov 2nd @ 5pm ET

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/events/quarantine-db-talk-2020-foundationdb/
https://db.cs.cmu.edu/events/quarantine-db-talk-2020-datometry/
https://db.cs.cmu.edu/events/quarantine-db-talk-2020-mysql/

15-445/645 (Fall 2020)

QUERY OPTIMIZATION

Remember that SQL is declarative.
→ User tells the DBMS what answer they want, not how to

get the answer.

There can be a big difference in performance based
on plan is used:
→ See last week: 1.3 hours vs. 0.45 seconds

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

IBM SYSTEM R

First implementation of a query optimizer from
the 1970s.
→ People argued that the DBMS could never choose a query

plan better than what a human could write.

Many concepts and design decisions from the
System R optimizer are still used today.

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

QUERY OPTIMIZATION

Heuristics / Rules
→ Rewrite the query to remove stupid / inefficient things.
→ These techniques may need to examine catalog, but they

do not need to examine data.

Cost-based Search
→ Use a model to estimate the cost of executing a plan.
→ Evaluate multiple equivalent plans for a query and pick

the one with the lowest cost.

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

ARCHITECTURE OVERVIEW

7

Parser

System
Catalog

Tree Rewriter
(Optional / Common)

Cost
Model

SQL Rewriter
(Optional / Rare)

Binder

Optimizer
SQL Query1

SQL Query2

Abstract
Syntax
Tree

3

Logical
Plan

4

Logical
Plan

5

Physical
Plan

6

Application

Name→Internal ID

Schema Info

Schema Info

Estimates

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

LOGICAL VS. PHYSICAL PL ANS

The optimizer generates a mapping of a logical
algebra expression to the optimal equivalent
physical algebra expression.

Physical operators define a specific execution
strategy using an access path.
→ They can depend on the physical format of the data that

they process (i.e., sorting, compression).
→ Not always a 1:1 mapping from logical to physical.

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

QUERY OPTIMIZATION IS NP -HARD

This is the hardest part of building a DBMS.

If you are good at this, you will get paid $$$.

People are starting to look at employing ML to
improve the accuracy and efficacy of optimizers.
→ IBM DB2 tried this with LEO in the early 2000s…

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://ieeexplore.ieee.org/document/5386840

15-445/645 (Fall 2020)

TODAY'S AGENDA

Relational Algebra Equivalences

Logical Query Optimization

Nested Queries

Expression Rewriting

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

REL ATIONAL ALGEBRA EQUIVALENCES

Two relational algebra expressions are equivalent
if they generate the same set of tuples.

The DBMS can identify better query plans without
a cost model.

This is often called query rewriting.

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

PREDICATE PUSHDOWN

12

SELECT s.name, e.cid
FROM student AS s, enrolled AS e
WHERE s.sid = e.sid
AND e.grade = 'A'

πname, cid(σgrade='A'(student⋈enrolled))

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

PREDICATE PUSHDOWN

12

student enrolled

s.sid=e.sid

grade='A'

s.name,e.cid

⨝
s

p

student enrolled

s.sid=e.sid

grade='A'

s.name,e.cid

s
p

⨝

SELECT s.name, e.cid
FROM student AS s, enrolled AS e
WHERE s.sid = e.sid
AND e.grade = 'A'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

REL ATIONAL ALGEBRA EQUIVALENCES

13

πname, cid(σgrade='A'(student⋈enrolled))

πname, cid(student⋈(σgrade='A'(enrolled)))

=

SELECT s.name, e.cid
FROM student AS s, enrolled AS e
WHERE s.sid = e.sid
AND e.grade = 'A'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

REL ATIONAL ALGEBRA EQUIVALENCES

Selections:
→ Perform filters as early as possible.
→ Break a complex predicate, and push down

σp1∧p2∧…pn(R) = σp1(σp2(…σpn(R)))

Simplify a complex predicate
→ (X=Y AND Y=3) → X=3 AND Y=3

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

REL ATIONAL ALGEBRA EQUIVALENCES

Joins:
→ Commutative, associative

R⋈S = S⋈R
(R⋈S)⋈T = R⋈(S⋈T)

The number of different join orderings for an n-
way join is a Catalan Number (≈4n)
→ Exhaustive enumeration will be too slow.

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
http://en.wikipedia.org/wiki/Catalan_number

15-445/645 (Fall 2020)

REL ATIONAL ALGEBRA EQUIVALENCES

Projections:
→ Perform them early to create smaller tuples and reduce

intermediate results (if duplicates are eliminated)
→ Project out all attributes except the ones requested or

required (e.g., joining keys)

This is not important for a column store…

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

PROJECTION PUSHDOWN

17

student enrolled

s.sid=e.sid

grade='A'

s.name,e.cid

⨝
s

p

student enrolled

s.sid=e.sid

grade='A'

s.name,e.cid

⨝

s

p

sid,cidpsid,namep

SELECT s.name, e.cid
FROM student AS s, enrolled AS e
WHERE s.sid = e.sid
AND e.grade = 'A'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

LOGICAL QUERY OPTIMIZATION

Transform a logical plan into an equivalent logical
plan using pattern matching rules.

The goal is to increase the likelihood of
enumerating the optimal plan in the search.

Cannot compare plans because there is no cost
model but can "direct" a transformation to a
preferred side.

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

LOGICAL QUERY OPTIMIZATION

Split Conjunctive Predicates

Predicate Pushdown

Replace Cartesian Products with Joins

Projection Pushdown

19

Source: Thomas Neumann

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://db.in.tum.de/teaching/ws1819/queryopt/?lang=en

15-445/645 (Fall 2020)

SPLIT CONJUNCTIVE PREDICATES

20

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

×
ARTIST

ARTIST.ID=APPEARS.ARTIST_ID AND
APPEARS.ALBUM_ID=ALBUM.ID AND
ALBUM.NAME="Andy's OG Remix"

s

APPEARS ALBUM

×

Decompose predicates into their
simplest forms to make it easier
for the optimizer to move them
around.

ARTIST.NAMEp

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

SPLIT CONJUNCTIVE PREDICATES

20

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

×
ARTIST APPEARS ALBUM

×

Decompose predicates into their
simplest forms to make it easier
for the optimizer to move them
around.

ARTIST.NAMEp
ARTIST.ID=APPEARS.ARTIST_IDs

ALBUM.NAME="Andy's OG Remix"s
APPEARS.ALBUM_ID=ALBUM.IDs

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

PREDICATE PUSHDOWN

21

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

ARTIST APPEARS ALBUM

Move the predicate to the lowest
point in the plan after Cartesian
products.

×

ARTIST.NAMEp

×

ARTIST.ID=APPEARS.ARTIST_IDs

ALBUM.NAME="Andy's OG Remix"s
APPEARS.ALBUM_ID=ALBUM.IDs

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

PREDICATE PUSHDOWN

21

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

ARTIST APPEARS ALBUM

Move the predicate to the lowest
point in the plan after Cartesian
products.

×

ARTIST.NAMEp

ARTIST.ID=APPEARS.ARTIST_IDs
ALBUM.NAME="Andy's OG Remix"s

APPEARS.ALBUM_ID=ALBUM.IDs
×

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

REPL ACE CARTESIAN PRODUCTS

22

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

Replace all Cartesian Products
with inner joins using the join
predicates.

ARTIST APPEARS ALBUM

ARTIST.NAMEp

ALBUM.NAME="Andy's OG Remix"s

×
ARTIST.ID=APPEARS.ARTIST_IDs

APPEARS.ALBUM_ID=ALBUM.IDs
×

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

REPL ACE CARTESIAN PRODUCTS

22

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

Replace all Cartesian Products
with inner joins using the join
predicates.

ARTIST APPEARS ALBUM

ARTIST.NAMEp

ALBUM.NAME="Andy's OG Remix"s
ARTIST.ID=APPEARS.ARTIST_ID⨝

APPEARS.ALBUM_ID=ALBUM.ID⨝

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

PROJECTION PUSHDOWN

23

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

Eliminate redundant attributes
before pipeline breakers to
reduce materialization cost.

ARTIST APPEARS ALBUM

ARTIST.NAMEp

ARTIST.ID=APPEARS.ARTIST_ID⨝

APPEARS.ALBUM_ID=ALBUM.ID⨝

ALBUM.NAME="Andy's OG Remix"s

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

PROJECTION PUSHDOWN

23

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

Eliminate redundant attributes
before pipeline breakers to
reduce materialization cost.

ARTIST APPEARS ALBUM

ARTIST.NAMEp

ALBUM.NAME="Andy's OG Remix"s

IDpARTIST.NAME,
APPEARS.ALBUM_IDp

ID,NAMEp ARTIST_ID,
ALBUM_IDp

ARTIST.ID=
APPEARS.ARTIST_ID⨝

APPEARS.ALBUM_ID=ALBUM.ID⨝

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

NESTED SUB-QUERIES

The DBMS treats nested sub-queries in the where
clause as functions that take parameters and return
a single value or set of values.

Two Approaches:
→ Rewrite to de-correlate and/or flatten them
→ Decompose nested query and store result to temporary

table

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

NESTED SUB-QUERIES: REWRITE

26

SELECT name FROM sailors AS S
WHERE EXISTS (

SELECT * FROM reserves AS R
WHERE S.sid = R.sid
AND R.day = '2018-10-15'

)

SELECT name
FROM sailors AS S, reserves AS R
WHERE S.sid = R.sid
AND R.day = '2018-10-15'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

NESTED SUB-QUERIES: DECOMPOSE

27

For each sailor with the highest rating (over all sailors) and at
least two reservations for red boats, find the sailor id and the
earliest date on which the sailor has a reservation for a red boat.

SELECT S.sid, MIN(R.day)
FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid
AND R.bid = B.bid
AND B.color = 'red'
AND S.rating = (SELECT MAX(S2.rating)

FROM sailors S2)
GROUP BY S.sid

HAVING COUNT(*) > 1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

DECOMPOSING QUERIES

For harder queries, the optimizer breaks up
queries into blocks and then concentrates on one
block at a time.

Sub-queries are written to a temporary table that
are discarded after the query finishes.

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

DECOMPOSING QUERIES

29

SELECT S.sid, MIN(R.day)
FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid
AND R.bid = B.bid
AND B.color = 'red'
AND S.rating = (SELECT MAX(S2.rating)

FROM sailors S2)
GROUP BY S.sid

HAVING COUNT(*) > 1

Nested Block

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

DECOMPOSING QUERIES

29

SELECT S.sid, MIN(R.day)
FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid
AND R.bid = B.bid
AND B.color = 'red'
AND S.rating = (SELECT MAX(S2.rating)

FROM sailors S2)
GROUP BY S.sid

HAVING COUNT(*) > 1

Nested Block

SELECT MAX(rating) FROM sailors

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

DECOMPOSING QUERIES

29

SELECT S.sid, MIN(R.day)
FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid
AND R.bid = B.bid
AND B.color = 'red'
AND S.rating = (SELECT MAX(S2.rating)

FROM sailors S2)
GROUP BY S.sid

HAVING COUNT(*) > 1

Nested Block

SELECT MAX(rating) FROM sailors

###

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

DECOMPOSING QUERIES

29

SELECT S.sid, MIN(R.day)
FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid
AND R.bid = B.bid
AND B.color = 'red'
AND S.rating = (SELECT MAX(S2.rating)

FROM sailors S2)
GROUP BY S.sid

HAVING COUNT(*) > 1

SELECT MAX(rating) FROM sailors

###

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

DECOMPOSING QUERIES

29

SELECT S.sid, MIN(R.day)
FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid
AND R.bid = B.bid
AND B.color = 'red'
AND S.rating = (SELECT MAX(S2.rating)

FROM sailors S2)
GROUP BY S.sid

HAVING COUNT(*) > 1

Outer Block

SELECT MAX(rating) FROM sailors

###

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

EXPRESSION REWRITING

An optimizer transforms a query's expressions
(e.g., WHERE clause predicates) into the
optimal/minimal set of expressions.

Implemented using if/then/else clauses or a
pattern-matching rule engine.
→ Search for expressions that match a pattern.
→ When a match is found, rewrite the expression.
→ Halt if there are no more rules that match.

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MORE EXAMPLES

Impossible / Unnecessary Predicates

31

Source: Lukas Eder

SELECT * FROM A WHERE 1 = 0;

CREATE TABLE A (
id INT PRIMARY KEY,
val INT NOT NULL);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

15-445/645 (Fall 2020)

MORE EXAMPLES

Impossible / Unnecessary Predicates

31

Source: Lukas Eder

SELECT * FROM A WHERE 1 = 0;

SELECT * FROM A WHERE 1 = 1;

CREATE TABLE A (
id INT PRIMARY KEY,
val INT NOT NULL);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

15-445/645 (Fall 2020)

MORE EXAMPLES

Impossible / Unnecessary Predicates

31

Source: Lukas Eder

SELECT * FROM A WHERE 1 = 0;

SELECT * FROM A WHERE 1 = 1;SELECT * FROM A;

CREATE TABLE A (
id INT PRIMARY KEY,
val INT NOT NULL);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

15-445/645 (Fall 2020)

MORE EXAMPLES

Impossible / Unnecessary Predicates

Join Elimination

31

Source: Lukas Eder

SELECT * FROM A WHERE 1 = 0;

SELECT A1.*
FROM A AS A1 JOIN A AS A2

ON A1.id = A2.id;

SELECT * FROM A WHERE 1 = 1;SELECT * FROM A;

CREATE TABLE A (
id INT PRIMARY KEY,
val INT NOT NULL);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

15-445/645 (Fall 2020)

MORE EXAMPLES

Impossible / Unnecessary Predicates

Join Elimination

31

Source: Lukas Eder

SELECT * FROM A WHERE 1 = 0;

SELECT * FROM A WHERE 1 = 1;

SELECT * FROM A;

SELECT * FROM A;

CREATE TABLE A (
id INT PRIMARY KEY,
val INT NOT NULL);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

15-445/645 (Fall 2020)

MORE EXAMPLES

Ignoring Projections

32

SELECT * FROM A AS A1
WHERE EXISTS(SELECT val FROM A AS A2

WHERE A1.id = A2.id);

CREATE TABLE A (
id INT PRIMARY KEY,
val INT NOT NULL);

Source: Lukas Eder

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

15-445/645 (Fall 2020)

MORE EXAMPLES

Ignoring Projections

32

SELECT * FROM A;

CREATE TABLE A (
id INT PRIMARY KEY,
val INT NOT NULL);

Source: Lukas Eder

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

15-445/645 (Fall 2020)

MORE EXAMPLES

Ignoring Projections

Merging Predicates

32

SELECT * FROM A
WHERE val BETWEEN 1 AND 100

OR val BETWEEN 50 AND 150;

SELECT * FROM A;

CREATE TABLE A (
id INT PRIMARY KEY,
val INT NOT NULL);

Source: Lukas Eder

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

15-445/645 (Fall 2020)

MORE EXAMPLES

Ignoring Projections

Merging Predicates

32

SELECT * FROM A
WHERE val BETWEEN 1 AND 150;

SELECT * FROM A;

CREATE TABLE A (
id INT PRIMARY KEY,
val INT NOT NULL);

Source: Lukas Eder

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

15-445/645 (Fall 2020)

CONCLUSION

We can use static rules and heuristics to optimize a
query plan without needing to understand the
contents of the database.

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

NEXT CL ASS

MID-TERM EXAM!

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

