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ADMINISTRIVIA

Project #2 – C2 is due Sun Nov 1st @ 11:59pm

Project #3 will be released this week.
It is due Sun Nov 22nd @ 11:59pm.

Homework #4 will be released next week.
It is due Sun Nov 8th @ 11:59pm.
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UPCOMING DATABASE TALKS

Datometry
→ Monday Oct 26th @ 5pm ET

MySQL Query Optimizer
→ Monday Nov 2nd @ 5pm ET

EraDB "Magical Indexes"
→ Monday Nov 9th @ 5pm ET
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QUERY OPTIMIZATION

Heuristics / Rules
→ Rewrite the query to remove stupid / inefficient things.
→ These techniques may need to examine catalog, but they 

do not need to examine data.

Cost-based Search
→ Use a model to estimate the cost of executing a plan.
→ Evaluate multiple equivalent plans for a query and pick 

the one with the lowest cost.

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

TODAY'S  AGENDA

Cost Estimation

Plan Enumeration
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COST-BASED QUERY PL ANNING

Generate an estimate of the cost of executing a 
particular query plan for the current state of the 
database.
→ Estimates are only meaningful internally.

This is independent of the search strategies that 
we talked about last class.
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COST MODEL COMPONENTS

Choice #1: Physical Costs
→ Predict CPU cycles, I/O, cache misses, RAM 

consumption,  pre-fetching, etc…
→ Depends heavily on hardware.

Choice #2: Logical Costs
→ Estimate result sizes per operator.
→ Independent of the operator algorithm.
→ Need estimations for operator result sizes.

Choice #3: Algorithmic Costs
→ Complexity of the operator algorithm implementation.
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DISK-BASED DBMS COST MODEL

The number of disk accesses will always dominate 
the execution time of a query.
→ CPU costs are negligible.
→ Must consider sequential vs. random I/O.

This is easier to model if the DBMS has full 
control over buffer management.
→ We will know the replacement strategy, pinning, and 

assume exclusive access to disk.
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POSTGRES COST MODEL

Uses a combination of CPU and I/O costs that are 
weighted by “magic” constant factors.

Default settings are obviously for a disk-resident 
database without a lot of memory:
→ Processing a tuple in memory is 400x faster than reading 

a tuple from disk.
→ Sequential I/O is 4x faster than random I/O.
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IBM DB2 COST MODEL

Database characteristics in system catalogs

Hardware environment (microbenchmarks)

Storage device characteristics (microbenchmarks)

Communications bandwidth (distributed only)

Memory resources (buffer pools, sort heaps)

Concurrency Environment
→ Average number of users
→ Isolation level / blocking
→ Number of available locks
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STATISTICS

The DBMS stores internal statistics about tables, 
attributes, and indexes in its internal catalog.

Different systems update them at different times.

Manual invocations:
→ Postgres/SQLite: ANALYZE
→ Oracle/MySQL: ANALYZE TABLE
→ SQL Server: UPDATE STATISTICS
→ DB2: RUNSTATS
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STATISTICS

For each relation R, the DBMS maintains the 
following information:
→ NR: Number of tuples in R.
→ V(A,R): Number of distinct values for attribute A.
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DERIVABLE STATISTICS

The selection cardinality SC(A,R) is the 
average number of records with a value for an 
attribute A given NR / V(A,R)

Note that this formula assumes data uniformity
where every value has the same frequency as all 
other values.
→ Example: 10,000 students, 10 colleges – how many 

students in SCS?

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

SELECTION STATISTICS

Equality predicates on unique keys are 
easy to estimate. 

Computing the selectivity of complex 
predicates is more difficult…
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SELECT * FROM people 
WHERE id = 123

SELECT * FROM people 
WHERE val > 1000

SELECT * FROM people 
WHERE age = 30
AND status = 'Lit'
AND age+id IN (1,2,3)

CREATE TABLE people (
id INT PRIMARY KEY,
val INT NOT NULL,
age INT NOT NULL,
status VARCHAR(16)

);
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COMPLEX PREDICATES

The selectivity (sel) of a predicate P is the 
fraction of tuples that qualify.

Formula depends on type of predicate:
→ Equality
→ Range
→ Negation
→ Conjunction
→ Disjunction
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SELECTIONS COMPLEX PREDICATES

Assume that V(age,people) has five 
distinct values (0–4) and NR = 5

Equality Predicate: A=constant
→ sel(A=constant) = SC(P) / NR
→ Example: sel(age=2) =
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SC(age=2)=1

SELECT * FROM people 
WHERE age = 2

1/5
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SELECTIONS COMPLEX PREDICATES

Range Predicate:
→ sel(A>=a) = (Amax– a+1) / (Amax– Amin+1)
→ Example: sel(age>=2) 
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≈ (4–2+1) / (4–0+1)
≈ 3/5

agemin = 0

SELECT * FROM people 
WHERE age >= 2

agemax = 4
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SELECTIONS COMPLEX PREDICATES

Negation Query:
→ sel(not P) = 1 – sel(P)
→ Example: sel(age != 2)

Observation: Selectivity ≈ Probability

19

= 1 – (1/5) = 4/5

SC(age!=2)=2 SC(age!=2)=2

SELECT * FROM people 
WHERE age != 2
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SELECTIONS COMPLEX PREDICATES

Conjunction: 
→ sel(P1 ⋀ P2) = sel(P1) ∙ sel(P2)
→ sel(age=2 ⋀ name LIKE 'A%')

This assumes that the predicates are 
independent.
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SELECT * FROM people 
WHERE age = 2
AND name LIKE 'A%'

P1 P2
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SELECTIONS COMPLEX PREDICATES

Disjunction: 
→ sel(P1 ⋁ P2)

= sel(P1) + sel(P2) – sel(P1⋀P2)
= sel(P1) + sel(P2) – sel(P1) ∙ 

sel(P2)
→ sel(age=2 OR name LIKE 'A%')

This again assumes that the
selectivities are independent.

21

SELECT * FROM people 
WHERE age = 2

OR name LIKE 'A%'

P1 P2
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SELECTION CARDINALIT Y

Assumption #1: Uniform Data
→ The distribution of values (except for the heavy hitters) is 

the same.

Assumption #2: Independent Predicates
→ The predicates on attributes are independent

Assumption #3: Inclusion Principle
→ The domain of join keys overlap such that each key in the 

inner relation will also exist in the outer table.
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CORREL ATED AT TRIBUTES

Consider a database of automobiles:
→ # of Makes = 10, # of Models = 100

And the following query:
→ (make="Honda" AND model="Accord")

With the independence and uniformity 
assumptions,  the selectivity is:
→ 1/10 × 1/100 = 0.001

But since only Honda makes Accords the real 
selectivity is 1/100 = 0.01
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Source: Guy Lohman
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COST ESTIMATIONS

Our formulas are nice, but we assume that data 
values are uniformly distributed.

26
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COST ESTIMATIONS

Our formulas are nice, but we assume that data 
values are uniformly distributed.
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EQUI-WIDTH HISTOGRAM

All buckets have the same width (i.e., the same 
number of values).

28

Bucket #1
Count=8

Bucket #2
Count=4

Bucket #3
Count=15

Bucket #4
Count=3

Bucket #5
Count=14

Bucket Ranges
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EQUI-WIDTH HISTOGRAM

All buckets have the same width (i.e., the same 
number of values).
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EQUI-DEPTH HISTOGRAMS

Vary the width of buckets so that the total number 
of occurrences for each bucket is roughly the same.
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EQUI-DEPTH HISTOGRAMS
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SKETCHES

Probabilistic data structures that generate 
approximate statistics about a data set.

Cost-model can replace histograms with sketches 
to improve its selectivity estimate accuracy.

Most common examples:
→ Count-Min Sketch (1988): Approximate frequency count 

of elements in a set.
→ HyperLogLog (2007): Approximate the number of 

distinct elements in a set.
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SAMPLING

Modern DBMSs also collect samples 
from tables to estimate selectivities.

Update samples when the underlying 
tables changes significantly.

31

⋮
1 billion tuples

1/3sel(age>50) =

SELECT AVG(age)
FROM people 
WHERE age > 50

id name age status

1001 Obama 59 Rested

1002 Kanye 41 Weird

1003 Tupac 25 Dead

1004 Bieber 26 Crunk

1005 Andy 39 Shaved

1006 TigerKing 57 Jailed1001 Obama 59 Rested

1003 Tupac 25 Dead

1005 Andy 39 Shaved

Table Sample
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OBSERVATION

Now that we can (roughly) estimate the selectivity 
of predicates, what can we do with them?

32
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QUERY OPTIMIZATION

After performing rule-based rewriting, the DBMS 
will enumerate different plans for the query and 
estimate their costs.
→ Single relation.
→ Multiple relations.
→ Nested sub-queries.

It chooses the best plan it has seen for the query 
after exhausting all plans or some timeout.

33
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SINGLE-REL ATION QUERY PL ANNING

Pick the best access method.
→ Sequential Scan
→ Binary Search (clustered indexes)
→ Index Scan

Predicate evaluation ordering.

Simple heuristics are often good enough for this.

OLTP queries are especially easy…

34
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OLTP QUERY PL ANNING

Query planning for OLTP queries is easy because 
they are sargable (Search Argument Able).
→ It is usually just picking the best index.
→ Joins are almost always on foreign key relationships with 

a small cardinality.
→ Can be implemented with simple heuristics.

35

CREATE TABLE people (
id INT PRIMARY KEY,
val INT NOT NULL,
⋮

);

SELECT * FROM people
WHERE id = 123;
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MULTI-REL ATION QUERY PL ANNING

As number of joins increases, number of 
alternative plans grows rapidly
→ We need to restrict search space.

Fundamental decision in System R: only left-deep 
join trees are considered.
→ Modern DBMSs do not always make this assumption 

anymore.
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MULTI-REL ATION QUERY PL ANNING

Fundamental decision in System R: Only consider 
left-deep join trees.
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MULTI-REL ATION QUERY PL ANNING

Fundamental decision in System R is to only 
consider left-deep join trees.

Allows for fully pipelined plans where 
intermediate results are not written to temp files.
→ Not all left-deep trees are fully pipelined.

38
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MULTI-REL ATION QUERY PL ANNING

Enumerate the orderings
→ Example: Left-deep tree #1, Left-deep tree #2…

Enumerate the plans for each operator
→ Example: Hash, Sort-Merge, Nested Loop…

Enumerate the access paths for each table
→ Example: Index #1, Index #2, Seq Scan…

Use dynamic programming to reduce the 
number of cost estimations.
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DYNAMIC PROGRAMMING

40

SortMerge Join
R.a=S.a

SortMerge Join
T.b=S.b

Hash Join
T.b=S.b

R ⨝ S
T

T ⨝ S
R

R ⨝ S ⨝ T

Hash Join
R.a=S.a SELECT * FROM R, S, T

WHERE R.a = S.a
AND S.b = T.b

Cost: 
300

Cost: 
400

Cost: 
280

Cost: 
200

R
S
T
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DYNAMIC PROGRAMMING

40

Hash Join
T.b=S.b

R ⨝ S
T

T ⨝ S
R

R ⨝ S ⨝ T

Hash Join
R.a=S.a

Hash Join
S.b=T.b

SortMerge Join
S.b=T.b

SortMerge Join
S.a=R.a

Hash Join
S.a=R.a

SELECT * FROM R, S, T
WHERE R.a = S.a
AND S.b = T.b

Cost: 
300

Cost: 
200

Cost: 
450

Cost: 
300

Cost: 
400

Cost: 
380

R
S
T
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DYNAMIC PROGRAMMING

40

Hash Join
T.b=S.b

R ⨝ S
T

T ⨝ S
R

R ⨝ S ⨝ T

Hash Join
R.a=S.a

Hash Join
S.b=T.b

SortMerge Join
S.a=R.a

SELECT * FROM R, S, T
WHERE R.a = S.a
AND S.b = T.b

Cost: 
300

Cost: 
200

Cost: 
300

Cost: 
380

R
S
T
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DYNAMIC PROGRAMMING

40

Hash Join
T.b=S.b

R ⨝ S
T

T ⨝ S
R

R ⨝ S ⨝ T
SortMerge Join
S.a=R.a

SELECT * FROM R, S, T
WHERE R.a = S.a
AND S.b = T.b

Cost: 
200

Cost: 
300

R
S
T
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CANDIDATE PL AN EXAMPLE

How to generate plans for search 
algorithm:
→ Enumerate relation orderings
→ Enumerate join algorithm choices
→ Enumerate access method choices

No real DBMSs does it this way.
It’s actually more messy…

41

SELECT * FROM R, S, T
WHERE R.a = S.a
AND S.b = T.b
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CANDIDATE PL ANS

Step #1: Enumerate relation orderings

42
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Prune plans with cross-
products immediately!
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CANDIDATE PL ANS

Step #2: Enumerate join algorithm choices
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CANDIDATE PL ANS

Step #3: Enumerate access method choices

44

R S

T

HJ

HJ

Do this for the other 
plans. 

HJ

HJ

SeqScan SeqScan

SeqScan

HJ

HJ

SeqScan IndexScan(S.b)

SeqScan
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POSTGRES OPTIMIZER

Examines all types of join trees
→ Left-deep, Right-deep, bushy

Two optimizer implementations:
→ Traditional Dynamic Programming Approach
→ Genetic Query Optimizer (GEQO)

Postgres uses the traditional algorithm when # of 
tables in query is less than 12 and switches to 
GEQO when there are 12 or more.

45
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POSTGRES GENETIC OPTIMIZER

46
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POSTGRES GENETIC OPTIMIZER
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POSTGRES GENETIC OPTIMIZER
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POSTGRES GENETIC OPTIMIZER
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1st Generation 2nd Generation 3rd Generation

…
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CONCLUSION

Filter early as possible.

Selectivity estimations
→ Uniformity
→ Independence
→ Histograms
→ Join selectivity

Dynamic programming for join orderings

Again, query optimization is hard…
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NEXT CL ASS

Transactions!
→ aka the second hardest part about database systems
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