
Intro to Database Systems

15-445/15-645

Fall 2020

Andy Pavlo
Computer Science
Carnegie Mellon UniversityAP

15 Query Planning
Part II

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2020
https://15445.courses.cs.cmu.edu/fall2019/
http://www.cs.cmu.edu/~pavlo/
http://www.cs.cmu.edu/~pavlo/

15-445/645 (Fall 2020)

HAIRCUT

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

ADMINISTRIVIA

Project #2 – C2 is due Sun Nov 1st @ 11:59pm

Project #3 will be released this week.
It is due Sun Nov 22nd @ 11:59pm.

Homework #4 will be released next week.
It is due Sun Nov 8th @ 11:59pm.

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

UPCOMING DATABASE TALKS

Datometry
→ Monday Oct 26th @ 5pm ET

MySQL Query Optimizer
→ Monday Nov 2nd @ 5pm ET

EraDB "Magical Indexes"
→ Monday Nov 9th @ 5pm ET

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/events/quarantine-db-talk-2020-datometry/
https://db.cs.cmu.edu/events/quarantine-db-talk-2020-mysql/
https://db.cs.cmu.edu/events/quarantine-db-talk-2020-eradb/

15-445/645 (Fall 2020)

QUERY OPTIMIZATION

Heuristics / Rules
→ Rewrite the query to remove stupid / inefficient things.
→ These techniques may need to examine catalog, but they

do not need to examine data.

Cost-based Search
→ Use a model to estimate the cost of executing a plan.
→ Evaluate multiple equivalent plans for a query and pick

the one with the lowest cost.

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TODAY'S AGENDA

Cost Estimation

Plan Enumeration

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

COST-BASED QUERY PL ANNING

Generate an estimate of the cost of executing a
particular query plan for the current state of the
database.
→ Estimates are only meaningful internally.

This is independent of the search strategies that
we talked about last class.

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

COST MODEL COMPONENTS

Choice #1: Physical Costs
→ Predict CPU cycles, I/O, cache misses, RAM

consumption, pre-fetching, etc…
→ Depends heavily on hardware.

Choice #2: Logical Costs
→ Estimate result sizes per operator.
→ Independent of the operator algorithm.
→ Need estimations for operator result sizes.

Choice #3: Algorithmic Costs
→ Complexity of the operator algorithm implementation.

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

DISK-BASED DBMS COST MODEL

The number of disk accesses will always dominate
the execution time of a query.
→ CPU costs are negligible.
→ Must consider sequential vs. random I/O.

This is easier to model if the DBMS has full
control over buffer management.
→ We will know the replacement strategy, pinning, and

assume exclusive access to disk.

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

POSTGRES COST MODEL

Uses a combination of CPU and I/O costs that are
weighted by “magic” constant factors.

Default settings are obviously for a disk-resident
database without a lot of memory:
→ Processing a tuple in memory is 400x faster than reading

a tuple from disk.
→ Sequential I/O is 4x faster than random I/O.

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

POSTGRES COST MODEL

Uses a combination of CPU and I/O costs that are
weighted by “magic” constant factors.

Default settings are obviously for a disk-resident
database without a lot of memory:
→ Processing a tuple in memory is 400x faster than reading

a tuple from disk.
→ Sequential I/O is 4x faster than random I/O.

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://www.postgresql.org/docs/current/static/runtime-config-query.html

15-445/645 (Fall 2020)

IBM DB2 COST MODEL

Database characteristics in system catalogs

Hardware environment (microbenchmarks)

Storage device characteristics (microbenchmarks)

Communications bandwidth (distributed only)

Memory resources (buffer pools, sort heaps)

Concurrency Environment
→ Average number of users
→ Isolation level / blocking
→ Number of available locks

11

Source: Guy Lohman

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
http://cs.stanford.edu/people/widom/cs346/db2-talk.pdf

15-445/645 (Fall 2020)

STATISTICS

The DBMS stores internal statistics about tables,
attributes, and indexes in its internal catalog.

Different systems update them at different times.

Manual invocations:
→ Postgres/SQLite: ANALYZE
→ Oracle/MySQL: ANALYZE TABLE
→ SQL Server: UPDATE STATISTICS
→ DB2: RUNSTATS

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

STATISTICS

For each relation R, the DBMS maintains the
following information:
→ NR: Number of tuples in R.
→ V(A,R): Number of distinct values for attribute A.

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

DERIVABLE STATISTICS

The selection cardinality SC(A,R) is the
average number of records with a value for an
attribute A given NR / V(A,R)

Note that this formula assumes data uniformity
where every value has the same frequency as all
other values.
→ Example: 10,000 students, 10 colleges – how many

students in SCS?

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

SELECTION STATISTICS

Equality predicates on unique keys are
easy to estimate.

Computing the selectivity of complex
predicates is more difficult…

15

SELECT * FROM people
WHERE id = 123

SELECT * FROM people
WHERE val > 1000

SELECT * FROM people
WHERE age = 30
AND status = 'Lit'
AND age+id IN (1,2,3)

CREATE TABLE people (
id INT PRIMARY KEY,
val INT NOT NULL,
age INT NOT NULL,
status VARCHAR(16)

);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

COMPLEX PREDICATES

The selectivity (sel) of a predicate P is the
fraction of tuples that qualify.

Formula depends on type of predicate:
→ Equality
→ Range
→ Negation
→ Conjunction
→ Disjunction

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

COMPLEX PREDICATES

The selectivity (sel) of a predicate P is the
fraction of tuples that qualify.

Formula depends on type of predicate:
→ Equality
→ Range
→ Negation
→ Conjunction
→ Disjunction

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

SELECTIONS COMPLEX PREDICATES

Assume that V(age,people) has five
distinct values (0–4) and NR = 5

Equality Predicate: A=constant
→ sel(A=constant) = SC(P) / NR
→ Example: sel(age=2) =

17

0 1 2 3 4

co
u

n
t

age

SC(age=2)=1

SELECT * FROM people
WHERE age = 2

1/5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

0 1 2 3 4

co
u

n
t

age

SELECTIONS COMPLEX PREDICATES

Range Predicate:
→ sel(A>=a) = (Amax– a+1) / (Amax– Amin+1)
→ Example: sel(age>=2)

18

≈ (4–2+1) / (4–0+1)
≈ 3/5

agemin = 0

SELECT * FROM people
WHERE age >= 2

agemax = 4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

0 1 2 3 4

co
u

n
t

age

SELECTIONS COMPLEX PREDICATES

Negation Query:
→ sel(not P) = 1 – sel(P)
→ Example: sel(age != 2)

Observation: Selectivity ≈ Probability

19

= 1 – (1/5) = 4/5

SC(age!=2)=2 SC(age!=2)=2

SELECT * FROM people
WHERE age != 2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

SELECTIONS COMPLEX PREDICATES

Conjunction:
→ sel(P1 ⋀ P2) = sel(P1) ∙ sel(P2)
→ sel(age=2 ⋀ name LIKE 'A%')

This assumes that the predicates are
independent.

20

SELECT * FROM people
WHERE age = 2
AND name LIKE 'A%'

P1 P2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

SELECTIONS COMPLEX PREDICATES

Disjunction:
→ sel(P1 ⋁ P2)

= sel(P1) + sel(P2) – sel(P1⋀P2)
= sel(P1) + sel(P2) – sel(P1) ∙

sel(P2)
→ sel(age=2 OR name LIKE 'A%')

This again assumes that the
selectivities are independent.

21

SELECT * FROM people
WHERE age = 2

OR name LIKE 'A%'

P1 P2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

SELECTIONS COMPLEX PREDICATES

Disjunction:
→ sel(P1 ⋁ P2)

= sel(P1) + sel(P2) – sel(P1⋀P2)
= sel(P1) + sel(P2) – sel(P1) ∙

sel(P2)
→ sel(age=2 OR name LIKE 'A%')

This again assumes that the
selectivities are independent.

21

SELECT * FROM people
WHERE age = 2

OR name LIKE 'A%'

P1 P2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

SELECTION CARDINALIT Y

Assumption #1: Uniform Data
→ The distribution of values (except for the heavy hitters) is

the same.

Assumption #2: Independent Predicates
→ The predicates on attributes are independent

Assumption #3: Inclusion Principle
→ The domain of join keys overlap such that each key in the

inner relation will also exist in the outer table.

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CORREL ATED AT TRIBUTES

Consider a database of automobiles:
→ # of Makes = 10, # of Models = 100

And the following query:
→ (make="Honda" AND model="Accord")

With the independence and uniformity
assumptions, the selectivity is:
→ 1/10 × 1/100 = 0.001

But since only Honda makes Accords the real
selectivity is 1/100 = 0.01

23

Source: Guy Lohman

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
http://wp.sigmod.org/?p=1075

15-445/645 (Fall 2020)

COST ESTIMATIONS

Our formulas are nice, but we assume that data
values are uniformly distributed.

26

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Uniform Approximation

Distinct values of attribute

of occurrences

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

COST ESTIMATIONS

Our formulas are nice, but we assume that data
values are uniformly distributed.

27

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Non-Uniform Approximation

15 Keys × 32-bits = 60 bytes

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Non-Uniform Approximation

EQUI-WIDTH HISTOGRAM

All buckets have the same width (i.e., the same
number of values).

28

Bucket #1
Count=8

Bucket #2
Count=4

Bucket #3
Count=15

Bucket #4
Count=3

Bucket #5
Count=14

Bucket Ranges

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

EQUI-WIDTH HISTOGRAM

All buckets have the same width (i.e., the same
number of values).

28

Bucket #1
Count=8

Bucket #2
Count=4

Bucket #3
Count=15

Bucket #4
Count=3

Bucket #5
Count=14

0

5

10

15

1-3 4-6 7-9 10-12 13-15

Equi-Width Histogram

Bucket Ranges

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

EQUI-DEPTH HISTOGRAMS

Vary the width of buckets so that the total number
of occurrences for each bucket is roughly the same.

29

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Histogram (Quantiles)

Bucket #1
Count=12

Bucket #2
Count=12

Bucket #3
Count=9

Bucket #4
Count=12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

EQUI-DEPTH HISTOGRAMS

Vary the width of buckets so that the total number
of occurrences for each bucket is roughly the same.

29

0

5

10

15

1-5 6-8 9-13 14-15

Histogram (Quantiles)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

SKETCHES

Probabilistic data structures that generate
approximate statistics about a data set.

Cost-model can replace histograms with sketches
to improve its selectivity estimate accuracy.

Most common examples:
→ Count-Min Sketch (1988): Approximate frequency count

of elements in a set.
→ HyperLogLog (2007): Approximate the number of

distinct elements in a set.

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://en.wikipedia.org/wiki/Count%E2%80%93min_sketch
https://en.wikipedia.org/wiki/HyperLogLog

15-445/645 (Fall 2020)

SAMPLING

Modern DBMSs also collect samples
from tables to estimate selectivities.

Update samples when the underlying
tables changes significantly.

31

⋮
1 billion tuples

1/3sel(age>50) =

SELECT AVG(age)
FROM people
WHERE age > 50

id name age status

1001 Obama 59 Rested

1002 Kanye 41 Weird

1003 Tupac 25 Dead

1004 Bieber 26 Crunk

1005 Andy 39 Shaved

1006 TigerKing 57 Jailed1001 Obama 59 Rested

1003 Tupac 25 Dead

1005 Andy 39 Shaved

Table Sample

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

OBSERVATION

Now that we can (roughly) estimate the selectivity
of predicates, what can we do with them?

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

QUERY OPTIMIZATION

After performing rule-based rewriting, the DBMS
will enumerate different plans for the query and
estimate their costs.
→ Single relation.
→ Multiple relations.
→ Nested sub-queries.

It chooses the best plan it has seen for the query
after exhausting all plans or some timeout.

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

SINGLE-REL ATION QUERY PL ANNING

Pick the best access method.
→ Sequential Scan
→ Binary Search (clustered indexes)
→ Index Scan

Predicate evaluation ordering.

Simple heuristics are often good enough for this.

OLTP queries are especially easy…

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

OLTP QUERY PL ANNING

Query planning for OLTP queries is easy because
they are sargable (Search Argument Able).
→ It is usually just picking the best index.
→ Joins are almost always on foreign key relationships with

a small cardinality.
→ Can be implemented with simple heuristics.

35

CREATE TABLE people (
id INT PRIMARY KEY,
val INT NOT NULL,
⋮

);

SELECT * FROM people
WHERE id = 123;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MULTI-REL ATION QUERY PL ANNING

As number of joins increases, number of
alternative plans grows rapidly
→ We need to restrict search space.

Fundamental decision in System R: only left-deep
join trees are considered.
→ Modern DBMSs do not always make this assumption

anymore.

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MULTI-REL ATION QUERY PL ANNING

Fundamental decision in System R: Only consider
left-deep join trees.

37

⨝

⨝
⨝

A B

C

D

⨝

⨝
⨝

A B

C

D

⨝⨝

⨝

A BC D

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MULTI-REL ATION QUERY PL ANNING

Fundamental decision in System R: Only consider
left-deep join trees.

37

⨝

⨝
⨝

A B

C

D

⨝

⨝
⨝

A B

C

D

⨝⨝

⨝

A BC DX X

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MULTI-REL ATION QUERY PL ANNING

Fundamental decision in System R is to only
consider left-deep join trees.

Allows for fully pipelined plans where
intermediate results are not written to temp files.
→ Not all left-deep trees are fully pipelined.

38

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MULTI-REL ATION QUERY PL ANNING

Enumerate the orderings
→ Example: Left-deep tree #1, Left-deep tree #2…

Enumerate the plans for each operator
→ Example: Hash, Sort-Merge, Nested Loop…

Enumerate the access paths for each table
→ Example: Index #1, Index #2, Seq Scan…

Use dynamic programming to reduce the
number of cost estimations.

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

DYNAMIC PROGRAMMING

40

SortMerge Join
R.a=S.a

SortMerge Join
T.b=S.b

Hash Join
T.b=S.b

R ⨝ S
T

T ⨝ S
R

R ⨝ S ⨝ T

Hash Join
R.a=S.a SELECT * FROM R, S, T

WHERE R.a = S.a
AND S.b = T.b

Cost:
300

Cost:
400

Cost:
280

Cost:
200

R
S
T

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

DYNAMIC PROGRAMMING

40

Hash Join
T.b=S.b

R ⨝ S
T

T ⨝ S
R

R ⨝ S ⨝ T

Hash Join
R.a=S.a

Hash Join
S.b=T.b

SortMerge Join
S.b=T.b

SortMerge Join
S.a=R.a

Hash Join
S.a=R.a

SELECT * FROM R, S, T
WHERE R.a = S.a
AND S.b = T.b

Cost:
300

Cost:
200

Cost:
450

Cost:
300

Cost:
400

Cost:
380

R
S
T

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

DYNAMIC PROGRAMMING

40

Hash Join
T.b=S.b

R ⨝ S
T

T ⨝ S
R

R ⨝ S ⨝ T

Hash Join
R.a=S.a

Hash Join
S.b=T.b

SortMerge Join
S.a=R.a

SELECT * FROM R, S, T
WHERE R.a = S.a
AND S.b = T.b

Cost:
300

Cost:
200

Cost:
300

Cost:
380

R
S
T

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

DYNAMIC PROGRAMMING

40

Hash Join
T.b=S.b

R ⨝ S
T

T ⨝ S
R

R ⨝ S ⨝ T
SortMerge Join
S.a=R.a

SELECT * FROM R, S, T
WHERE R.a = S.a
AND S.b = T.b

Cost:
200

Cost:
300

R
S
T

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CANDIDATE PL AN EXAMPLE

How to generate plans for search
algorithm:
→ Enumerate relation orderings
→ Enumerate join algorithm choices
→ Enumerate access method choices

No real DBMSs does it this way.
It’s actually more messy…

41

SELECT * FROM R, S, T
WHERE R.a = S.a
AND S.b = T.b

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CANDIDATE PL ANS

Step #1: Enumerate relation orderings

42

⨝

⨝

T R

S ⨝

⨝

S T

R ×

⨝

R S

T

⨝

⨝

R S

T ⨝

⨝

S R

T ×

⨝

S T

R

Prune plans with cross-
products immediately!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CANDIDATE PL ANS

Step #2: Enumerate join algorithm choices

43

⨝

⨝

R S

T

Do this for the other
plans.

R S

TNLJ

NLJ

R S

THJ

NLJ

R S

TNLJ

HJ

R S

T

HJ

HJ

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CANDIDATE PL ANS

Step #3: Enumerate access method choices

44

R S

T

HJ

HJ

Do this for the other
plans.

HJ

HJ

SeqScan SeqScan

SeqScan

HJ

HJ

SeqScan IndexScan(S.b)

SeqScan

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

POSTGRES OPTIMIZER

Examines all types of join trees
→ Left-deep, Right-deep, bushy

Two optimizer implementations:
→ Traditional Dynamic Programming Approach
→ Genetic Query Optimizer (GEQO)

Postgres uses the traditional algorithm when # of
tables in query is less than 12 and switches to
GEQO when there are 12 or more.

45

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

POSTGRES GENETIC OPTIMIZER

46

Best:100
1st Generation

R S

T

NL

NL
Cost:
300

T R

S

NL

HJ

S R

T

HJ

HJ

Cost:
200

Cost:
100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

POSTGRES GENETIC OPTIMIZER

46

Best:100
1st Generation 2nd Generation

R S

T

NL

NL
Cost:
300

T R

S

NL

HJ

S R

T

HJ

HJ

Cost:
200

Cost:
100

S R

T

HJ

HJ

R T

S

NL

HJ

T R

S

HJ

HJ

Cost:
80

Cost:
200

Cost:
110

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

POSTGRES GENETIC OPTIMIZER

46

1st Generation 2nd Generation
Best:80

R S

T

NL

NL
Cost:
300

T R

S

NL

HJ

S R

T

HJ

HJ

Cost:
200

Cost:
100

S R

T

HJ

HJ

R T

S

NL

HJ

T R

S

HJ

HJ

Cost:
80

Cost:
200

Cost:
110

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

POSTGRES GENETIC OPTIMIZER

46

1st Generation 2nd Generation 3rd Generation

…

Best:80

R S

T

NL

NL
Cost:
300

T R

S

NL

HJ

S R

T

HJ

HJ

Cost:
200

Cost:
100

S R

T

HJ

HJ

R T

S

NL

HJ

T R

S

HJ

HJ

Cost:
80

Cost:
200

Cost:
110

R S

T

HJ

HJ

R S

T

HJ

HJ

R T

S

HJ

HJ

Cost:
90

Cost:
160

Cost:
120

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CONCLUSION

Filter early as possible.

Selectivity estimations
→ Uniformity
→ Independence
→ Histograms
→ Join selectivity

Dynamic programming for join orderings

Again, query optimization is hard…

47

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

NEXT CL ASS

Transactions!
→ aka the second hardest part about database systems

48

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

