
Intro to Database Systems

15-445/15-645

Fall 2020

Andy Pavlo
Computer Science
Carnegie Mellon UniversityAP

16 Concurrency
Control Theory

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2020
https://15445.courses.cs.cmu.edu/fall2019/
http://www.cs.cmu.edu/~pavlo/
http://www.cs.cmu.edu/~pavlo/

15-445/645 (Fall 2020)

ADMINISTRIVIA

Project #2 – C2 is due Sun Nov 1st @ 11:59pm

Project #3 will be released this week.
It is due Sun Nov 22nd @ 11:59pm.

Homework #4 will be released next week.
It is due Sun Nov 8th @ 11:59pm.

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

ADMINISTRIVIA

We will organize student-run discussion groups
for projects.

Students can opt-in to be part of a small group
(max 10 students) to discuss projects.
→ We will still run Moss so don't copy each other's code.
→ It is okay to share student-written tests.

If you want to volunteer to lead one, then we will
send you database schwag.

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

UPCOMING DATABASE TALKS

MySQL Query Optimizer
→ Monday Nov 2nd @ 5pm ET

EraDB "Magical Indexes"
→ Monday Nov 9th @ 5pm ET

FaunaDB Serverless DBMS
→ Monday Nov 16th @ 5pm ET

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/events/quarantine-db-talk-2020-mysql/
https://db.cs.cmu.edu/events/quarantine-db-talk-2020-eradb/
https://db.cs.cmu.edu/events/quarantine-db-talk-2020-faunadb/

15-445/645 (Fall 2020)

Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager

COURSE STATUS

A DBMS's concurrency control and
recovery components permeate
throughout the design of its entire
architecture.

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

Concurrency Control

Recovery

Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager

COURSE STATUS

A DBMS's concurrency control and
recovery components permeate
throughout the design of its entire
architecture.

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MOTIVATION

We both change the same record in a
table at the same time.
How to avoid race condition?

You transfer $100 between bank
accounts but there is a power failure.
What is the correct database state?

6

Lost Updates
Concurrency Control

Durability
Recovery

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CONCURRENCY CONTROL & RECOVERY

Valuable properties of DBMSs.

Based on concept of transactions with ACID
properties.

Let's talk about transactions…

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TRANSACTIONS

A transaction is the execution of a sequence of
one or more operations (e.g., SQL queries) on a
database to perform some higher-level function.

It is the basic unit of change in a DBMS:
→ Partial transactions are not allowed!

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TRANSACTION EXAMPLE

Move $100 from Andy' bank account to his
promotor's account.

Transaction:
→ Check whether Andy has $100.
→ Deduct $100 from his account.
→ Add $100 to his promotor account.

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

STRAWMAN SYSTEM

Execute each txn one-by-one (i.e., serial order) as
they arrive at the DBMS.
→ One and only one txn can be running at the same time in

the DBMS.

Before a txn starts, copy the entire database to a
new file and make all changes to that file.
→ If the txn completes successfully, overwrite the original

file with the new one.
→ If the txn fails, just remove the dirty copy.

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

PROBLEM STATEMENT

A (potentially) better approach is to allow
concurrent execution of independent transactions.

Why do we want that?
→ Better utilization/throughput
→ Increased response times to users.

But we also would like:
→ Correctness
→ Fairness

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TRANSACTIONS

Hard to ensure correctness…
→ What happens if Andy only has $100 and tries to pay off

two promotors at the same time?

Hard to execute quickly…
→ What happens if Andy tries to pay off his gambling debts

at the exact same time?

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

PROBLEM STATEMENT

Arbitrary interleaving of operations can lead to:
→ Temporary Inconsistency (ok, unavoidable)
→ Permanent Inconsistency (bad!)

We need formal correctness criteria to determine
whether an interleaving is valid.

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

DEFINITIONS

A txn may carry out many operations on the data
retrieved from the database

The DBMS is only concerned about what data is
read/written from/to the database.
→ Changes to the "outside world" are beyond the scope of

the DBMS.

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

FORMAL DEFINITIONS

Database: A fixed set of named data objects (e.g.,
A, B, C, …).
→ We do not need to define what these objects are now.

Transaction: A sequence of read and write
operations (R(A), W(B), …)
→ DBMS's abstract view of a user program

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TRANSACTIONS IN SQL

A new txn starts with the BEGIN command.

The txn stops with either COMMIT or ABORT:
→ If commit, the DBMS either saves all the txn's changes

or aborts it.
→ If abort, all changes are undone so that it's like as if the

txn never executed at all.

Abort can be either self-inflicted or caused by the
DBMS.

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CORRECTNESS CRITERIA: ACID

Atomicity: All actions in the txn happen, or none
happen.

Consistency: If each txn is consistent and the DB
starts consistent, then it ends up consistent.

Isolation: Execution of one txn is isolated from
that of other txns.

Durability: If a txn commits, its effects persist.

17

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CORRECTNESS CRITERIA: ACID

Atomicity: “all or nothing”

Consistency: “it looks correct to me”

Isolation: “as if alone”

Durability: “survive failures”

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TODAY'S AGENDA

Atomicity

Consistency

Isolation

Durability

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

ATOMICIT Y OF TRANSACTIONS

Two possible outcomes of executing a txn:
→ Commit after completing all its actions.
→ Abort (or be aborted by the DBMS) after executing some

actions.

DBMS guarantees that txns are atomic.
→ From user's point of view: txn always either executes all

its actions or executes no actions at all.

20A

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

ATOMICIT Y OF TRANSACTIONS

Scenario #1:
→ We take $100 out of Andy's account but then the DBMS

aborts the txn before we transfer it.

Scenario #2:
→ We take $100 out of Andy's account but then there is a

power failure before we transfer it.

What should be the correct state of Andy's account
after both txns abort?

21A

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MECHANISMS FOR ENSURING ATOMICIT Y

Approach #1: Logging
→ DBMS logs all actions so that it can undo the actions of

aborted transactions.
→ Maintain undo records both in memory and on disk.
→ Think of this like the black box in airplanes…

Logging is used by almost every DBMS.
→ Audit Trail
→ Efficiency Reasons

22A

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MECHANISMS FOR ENSURING ATOMICIT Y

Approach #2: Shadow Paging
→ DBMS makes copies of pages and txns make changes to

those copies. Only when the txn commits is the page
made visible to others.

→ Originally from System R.

Few systems do this:
→ CouchDB
→ LMDB (OpenLDAP)

23A

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CONSISTENCY

The "world" represented by the database is
logically correct. All questions asked about the data
are given logically correct answers.

Database Consistency

Transaction Consistency

24C

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

DATABASE CONSISTENCY

The database accurately models the real world and
follows integrity constraints.

Transactions in the future see the effects of
transactions committed in the past inside of the
database.

25C

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TRANSACTION CONSISTENCY

If the database is consistent before the transaction
starts (running alone), it will also be consistent
after.

Transaction consistency is the application's
responsibility. DBMS cannot control this.
→ We won't discuss this issue further…

26C

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

ISOL ATION OF TRANSACTIONS

Users submit txns, and each txn executes as if it
was running by itself.
→ Easier programming model to reason about.

But the DBMS achieves concurrency by
interleaving the actions (reads/writes of DB
objects) of txns.

We need a way to interleave txns but still make it
appear as if they ran one-at-a-time.

27I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MECHANISMS FOR ENSURING ISOL ATION

A concurrency control protocol is how the
DBMS decides the proper interleaving of
operations from multiple transactions.

Two categories of protocols:
→ Pessimistic: Don't let problems arise in the first place.
→ Optimistic: Assume conflicts are rare, deal with them

after they happen.

28I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

EXAMPLE

Assume at first A and B each have $1000.

T1 transfers $100 from A's account to B's

T2 credits both accounts with 6% interest.

29

BEGIN
A=A-100
B=B+100
COMMIT

T1
BEGIN
A=A*1.06
B=B*1.06
COMMIT

T2

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

EXAMPLE

Assume at first A and B each have $1000.

What are the possible outcomes of running T1 and T2?

30

BEGIN
A=A-100
B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT

T1 T2

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

EXAMPLE

Assume at first A and B each have $1000.

What are the possible outcomes of running T1 and T2?

Many! But A+B should be:
→ $2000*1.06=$2120

There is no guarantee that T1 will execute before
T2 or vice-versa, if both are submitted together.
But the net effect must be equivalent to these two
transactions running serially in some order.

31I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

EXAMPLE

Legal outcomes:
→ A=954, B=1166
→ A=960, B=1160

The outcome depends on whether T1 executes
before T2 or vice versa.

32

A+B=$2120
A+B=$2120

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

SERIAL EXECUTION EXAMPLE

33

≡

A=954, B=1166 A=960, B=1160

T
IM

E

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06
B=B*1.06
COMMIT

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2
BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule Schedule

I

A+B=$2120

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

INTERLEAVING TRANSACTIONS

We interleave txns to maximize concurrency.
→ Slow disk/network I/O.
→ Multi-core CPUs.

When one txn stalls because of a resource (e.g.,
page fault), another txn can continue executing
and make forward progress.

34I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

INTERLEAVING EXAMPLE (GOOD)

35

BEGIN
A=A-100

B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06

B=B*1.06
COMMIT

T
IM

E
Schedule

A=954, B=1166

≡

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule

A=960, B=1160

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

INTERLEAVING EXAMPLE (GOOD)

35

BEGIN
A=A-100

B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06

B=B*1.06
COMMIT

T
IM

E
Schedule

A=954, B=1166

≡

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule

A=960, B=1160

I

A+B=$2120

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

INTERLEAVING EXAMPLE (BAD)

36

≢
A=954, B=1166

or
A=960, B=1160

BEGIN
A=A-100

B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT

The bank is missing $6!

T
IM

E
Schedule

T1 T2

A=954, B=1160

I

A+B=$2114

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

INTERLEAVING EXAMPLE (BAD)

37

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(A)
W(A)
R(B)
W(B)
COMMIT

BEGIN
A=A-100

B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT

T
IM

E
Schedule DBMS View

T1 T2 T1 T2

A=954, B=1160

I

A+B=$2114

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CORRECTNESS

How do we judge whether a schedule is correct?

If the schedule is equivalent to some serial
execution.

38I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

FORMAL PROPERTIES OF SCHEDULES

Serial Schedule
→ A schedule that does not interleave the actions of

different transactions.

Equivalent Schedules
→ For any database state, the effect of executing the first

schedule is identical to the effect of executing the second
schedule.

→ Doesn't matter what the arithmetic operations are!

39I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

FORMAL PROPERTIES OF SCHEDULES

Serializable Schedule
→ A schedule that is equivalent to some serial execution of

the transactions.

If each transaction preserves consistency, every
serializable schedule preserves consistency.

40I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

FORMAL PROPERTIES OF SCHEDULES

Serializability is a less intuitive notion of
correctness compared to txn initiation time or
commit order, but it provides the DBMS with
additional flexibility in scheduling operations.

More flexibility means better parallelism.

41I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CONFLICTING OPERATIONS

We need a formal notion of equivalence that can
be implemented efficiently based on the notion of
"conflicting" operations

Two operations conflict if:
→ They are by different transactions,
→ They are on the same object and at least one of them is a

write.

42I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

INTERLEAVED EXECUTION ANOMALIES

Read-Write Conflicts (R-W)

Write-Read Conflicts (W-R)

Write-Write Conflicts (W-W)

43I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

READ-WRITE CONFLICTS

Unrepeatable Reads

44

BEGIN
R(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

$10

$10
$19

$19

T1 T2

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

WRITE-READ CONFLICTS

Reading Uncommitted Data ("Dirty Reads")

45

BEGIN
R(A)
W(A)

ABORT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

$10
$12

$12
$14

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

WRITE-WRITE CONFLICTS

Overwriting Uncommitted Data

46

BEGIN
W(A)

W(B)
COMMIT

BEGIN
W(A)
W(B)
COMMIT

Andy
$19

T1 T2

$10

Bieber

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

FORMAL PROPERTIES OF SCHEDULES

Given these conflicts, we now can understand
what it means for a schedule to be serializable.
→ This is to check whether schedules are correct.
→ This is not how to generate a correct schedule.

There are different levels of serializability:
→ Conflict Serializability
→ View Serializability

47

Most DBMSs try to support this.

No DBMS can do this.

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CONFLICT SERIALIZABLE SCHEDULES

Two schedules are conflict equivalent iff:
→ They involve the same actions of the same transactions,

and
→ Every pair of conflicting actions is ordered the same way.

Schedule S is conflict serializable if:
→ S is conflict equivalent to some serial schedule.

48I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CONFLICT SERIALIZABILIT Y INTUITION

Schedule S is conflict serializable if you can
transform S into a serial schedule by swapping
consecutive non-conflicting operations of different
transactions.

49I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CONFLICT SERIALIZABILIT Y INTUITION

50

BEGIN
R(A)
W(A)

COMMIT

BEGIN

R(B)
W(B)
COMMIT

R(B)

R(A)
W(A)

W(B)T
IM

E
Schedule

T1 T2

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CONFLICT SERIALIZABILIT Y INTUITION

50

BEGIN
R(A)
W(A)

COMMIT

BEGIN

R(B)
W(B)
COMMIT

W(A)

R(A)
R(B)

W(B)T
IM

E
Schedule

T1 T2

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CONFLICT SERIALIZABILIT Y INTUITION

50

BEGIN
R(A)
W(A)

COMMIT

BEGIN

R(B)
W(B)
COMMIT

W(A)
R(A)

R(B)

W(B)T
IM

E
Schedule

T1 T2

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CONFLICT SERIALIZABILIT Y INTUITION

50

BEGIN
R(A)
W(A)

COMMIT

BEGIN

R(B)
W(B)
COMMIT

R(A)
R(B)

W(B)
W(A)T

IM
E
Schedule

T1 T2

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CONFLICT SERIALIZABILIT Y INTUITION

50

≡

BEGIN
R(A)
W(A)

COMMIT

BEGIN

R(B)
W(B)
COMMIT

BEGIN
R(A)
W(A)
R(B)
W(B)
COMMIT BEGIN

R(A)
W(A)
R(B)
W(B)
COMMIT

R(B)

W(A)
R(A)

W(B)

T
IM

E
Schedule

T1 T2

Serial Schedule

T1 T2

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

Schedule

T1 T2

Serial Schedule

T1 T2

CONFLICT SERIALIZABILIT Y INTUITION

51

BEGIN
R(A)

W(A)
COMMIT

BEGIN

R(A)
W(A)

COMMIT

BEGIN
R(A)
W(A)
COMMIT BEGIN

R(A)
W(A)
COMMIT

≢

T
IM

E

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

SERIALIZABILIT Y

Swapping operations is easy when there are only
two txns in the schedule. It's cumbersome when
there are many txns.

Are there any faster algorithms to figure this out
other than transposing operations?

52I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

DEPENDENCY GRAPHS

One node per txn.

Edge from Ti to Tj if:
→ An operation Oi of Ti conflicts with an

operation Oj of Tj and
→ Oi appears earlier in the schedule than Oj.

Also known as a precedence graph.

A schedule is conflict serializable iff its
dependency graph is acyclic.

53

Ti Tj

Dependency Graph

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

EXAMPLE #1

54

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN

R(A)
W(A)
R(B)
W(B)
COMMIT

T1 T2

A

Schedule

T1 T2

T
IM

E
Dependency Graph

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

EXAMPLE #1

54

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN

R(A)
W(A)
R(B)
W(B)
COMMIT

T1 T2

A

B

The cycle in the graph
reveals the problem.

The output of T1 depends
on T2, and vice-versa.

Schedule

T1 T2

T
IM

E
Dependency Graph

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

Dependency Graph

EXAMPLE #2 THREESOME

56

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

T
IM

E
Schedule

T1 T2 T3

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

Dependency Graph

EXAMPLE #2 THREESOME

56

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

B

T
IM

E
Schedule

T1 T2 T3

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

Dependency Graph

EXAMPLE #2 THREESOME

56

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

B
A

T
IM

E
Schedule

T1 T2 T3

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

Dependency Graph

EXAMPLE #2 THREESOME

56

Is this equivalent to a serial execution?

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

B
A

T
IM

E
Schedule

T1 T2 T3

I

Yes (T2, T1, T3)
→ Notice that T3 should go after T2,

although it starts before it!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

EXAMPLE #3 INCONSISTENT ANALYSIS

57

BEGIN
R(A)
A = A-10
W(A)

R(B)
B = B+10
W(B)
COMMIT

BEGIN

R(A)
sum = A
R(B)
sum += B
ECHO sum
COMMIT

T1 T2

T
IM

E
Schedule

T1 T2

Dependency Graph

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

EXAMPLE #3 INCONSISTENT ANALYSIS

57

BEGIN
R(A)
A = A-10
W(A)

R(B)
B = B+10
W(B)
COMMIT

BEGIN

R(A)
sum = A
R(B)
sum += B
ECHO sum
COMMIT

T1 T2

T
IM

E
Schedule

T1 T2

Dependency Graph

A

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

EXAMPLE #3 INCONSISTENT ANALYSIS

57

BEGIN
R(A)
A = A-10
W(A)

R(B)
B = B+10
W(B)
COMMIT

BEGIN

R(A)
sum = A
R(B)
sum += B
ECHO sum
COMMIT

T1 T2

T
IM

E
Schedule

T1 T2

Dependency Graph

A

B

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

EXAMPLE #3 INCONSISTENT ANALYSIS

57

BEGIN
R(A)
A = A-10
W(A)

R(B)
B = B+10
W(B)
COMMIT

BEGIN

R(A)
sum = A
R(B)
sum += B
ECHO sum
COMMIT

T1 T2

Is it possible to modify only the
application logic so that schedule
produces a "correct" result but is still
not conflict serializable?

T
IM

E
Schedule

T1 T2

Dependency Graph

A

Bif(A≥0): cnt++

if(B≥0): cnt++
ECHO cnt

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

VIEW SERIALIZABILIT Y

Alternative (weaker) notion of serializability.

Schedules S1 and S2 are view equivalent if:
→ If T1 reads initial value of A in S1, then T1 also reads initial

value of A in S2.
→ If T1 reads value of A written by T2 in S1, then T1 also

reads value of A written by T2 in S2.
→ If T1 writes final value of A in S1, then T1 also writes final

value of A in S2.

58I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

Dependency Graph

VIEW SERIALIZABILIT Y

59

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

T1 T2

T3

T
IM

E
Schedule

T1 T2 T3

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

Dependency Graph

VIEW SERIALIZABILIT Y

59

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

A
T1 T2

T3

T
IM

E
Schedule

T1 T2 T3

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

Dependency Graph

VIEW SERIALIZABILIT Y

59

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

A

A

T1 T2

T3

T
IM

E
Schedule

T1 T2 T3

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

Dependency Graph

VIEW SERIALIZABILIT Y

59

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

A

A

A

T1 T2

T3

T
IM

E
Schedule

T1 T2 T3

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

Dependency Graph

VIEW SERIALIZABILIT Y

59

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

A

A

A
A

T1 T2

T3

T
IM

E
Schedule

T1 T2 T3

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

Dependency Graph

VIEW SERIALIZABILIT Y

59

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

A

A

AA
A

T1 T2

T3

T
IM

E
Schedule

T1 T2 T3

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

VIEW SERIALIZABILIT Y

60

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

BEGIN
W(A)
COMMIT

BEGIN
W(A)
COMMIT

≡
VIEW

T
IM

E
Schedule

T1 T2 T3

Allows all conflict
serializable schedules +

"blind writes"

Schedule

T1 T2 T3

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

SERIALIZABILIT Y

View Serializability allows for (slightly) more
schedules than Conflict Serializability does.
→ But is difficult to enforce efficiently.

Neither definition allows all schedules that you
would consider "serializable".
→ This is because they don't understand the meanings of

the operations or the data (recall example #3)

61I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

SERIALIZABILIT Y

In practice, Conflict Serializability is what
systems support because it can be enforced
efficiently.

To allow more concurrency, some special cases get
handled separately at the application level.

62I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

All Schedules

UNIVERSE OF SCHEDULES

63

View Serializable

Conflict Serializable

Serial

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TRANSACTION DURABILIT Y

All the changes of committed transactions should
be persistent.
→ No torn updates.
→ No changes from failed transactions.

The DBMS can use either logging or shadow
paging to ensure that all changes are durable.

64D

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

ACID PROPERTIES

Atomicity: All actions in the txn happen, or none
happen.

Consistency: If each txn is consistent and the DB
starts consistent, then it ends up consistent.

Isolation: Execution of one txn is isolated from
that of other txns.

Durability: If a txn commits, its effects persist.

65

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CONCLUSION

Concurrency control and recovery are among the
most important functions provided by a DBMS.

Concurrency control is automatic
→ System automatically inserts lock/unlock requests and

schedules actions of different txns.
→ Ensures that resulting execution is equivalent to

executing the txns one after the other in some order.

66

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CONCLUSION

Concurrency control and recovery are among the
most important functions provided by a DBMS.

Concurrency control is automatic
→ System automatically inserts lock/unlock requests and

schedules actions of different txns.
→ Ensures that resulting execution is equivalent to

executing the txns one after the other in some order.

66

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://static.googleusercontent.com/media/research.google.com/en/archive/spanner-osdi2012.pdf

15-445/645 (Fall 2020)

NEXT CL ASS

Two-Phase Locking

Isolation Levels

72

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

