
CS 186
Introduction to Database Systems

Alvin Cheung
Aditya Parameswaran

Essential Queries
• Why take this class?
• What is this class all about?
• Who is running this?
• How will this class work?

WHY?

Why?

• This class will cover how to develop systems to
efficiently manage, maintain, process, query,
transact with, and make sense of data

Why? Reason #1: Utility
• This class will cover how to develop systems to efficiently manage,

maintain, process, query, transact with, and make sense of data

• These systems are incredibly useful!
• You’re likely using such systems under the hood when you’re

• Booking a hotel, a Lyft, an AirBnB, or a flight
• Liking a post on Twitter or Facebook
• Figuring out where to eat from Yelp, GrubHub, or Caviar
• Posting on Piazza or Slack
• Transferring money or making a stock trade
• Making a purchase on Etsy or Amazon
• <Your next app here>

• Virtually every app is backed by such systems

Why? Reason #1: Utility
• This class will cover how to develop systems to efficiently manage,

maintain, process, query, transact with, and make sense of data

• Virtually every app is backed by such systems
• These systems are the backbone of modern science

• Genomics, astronomy, medicine, meteorology, …
• All of which generate massive volumes of data and a need to make

sense of it
• These systems are the key to some of our most pressing societal

“grand challenges”: climate change, public health, …

Why? Reason #1: Utility
• This class will cover how to develop systems to efficiently manage,

maintain, process, query, transact with, and make sense of data

• Virtually every app is backed by such systems
• These systems are the backbone of modern science
• The principles taught in this class will play a role in any setting with

data at scale [i.e., most settings!]

Why? Reason #2: Centrality
• Data is at the center of modern society
• Huge promise, but many potential concerns
• Use and misuse

• Timely debates about the use of data, privacy,
security, ethics, fairness, ….

Berkeley’s New(ish) Data Science Major
https://data.berkeley.edu/degrees/data-science-ba

Why? Reason #2: Centrality
• Data is at the center of modern society

• Huge promise, but many potential concerns
• Use and misuse

• Timely debates about the use of data, privacy, security,
ethics, fairness, ….

• Data infrastructure (i.e., the systems we will study/develop)
determines what’s possible and what is feasible

• As data is central, the infrastructure to manage data is just
as central

Why #3? The Core of Computing
• Data growth will continue to outpace computation
• Key bottleneck in the future: data processing

• Systems for Data at Scale: the core of modern
computing

https://www.domo.com/learn/data-never-sleeps-5

Every Minute!

Scale of Scientific Data

Large Hadron Collider, CERN
• Raw data: 1MB/event. 600,000,000 events/sec.

= 1.9×1022 bytes/year = 19 ZettaBytes/year
• Downsampled: 25GB/sec = 7.88×1017 bytes/year = 788 PetaBytes/year
• Downsampled further: 1050MB/sec = 3.3*1016/year = 33 PetaBytes/year

https://home.cern/about/computing/processing-what-record

Why #3? The Core of Computing
• Data growth will continue to outpace computation
• Key bottleneck in the future: data processing

• Systems for Data at Scale: the core of modern
computing

• Techniques you learn in this class underlie many topics
in computing
• Abstraction, representation & modeling, reuse, rapid

access, declarativity, …

Turing Awards in
Data Management

Charles Bachman, 1973
IDS and CODASYL

Ted Codd, 1981
Relational model

Michael Stonebraker, 2014
INGRES and Postgres

Jim Gray, 1998
Transaction processing

Why #4? Tons of Opportunities in Academic Research

Developing scalable systems
for data is one of the most
exciting areas of CS research!

Essential Queries, Pt 2
• Why take this class?
• What is this class all about?
• Who is running this?
• How will this class work?

What is this class all about?
• Databases?
• What is a database?

Task: Build a Banking Data Management
System from Scratch without a "Database”

Goal: Manage customers, accounts, joint accounts,
transfers, transactions, interest rates.

Let’s say I implement this system using C++/Java/Python,
without using a database system

Q: Think like a designer: what aspects do we need to
worry about?

Aspects to worry about

• Deal with lots of data
• Be fast
• Don’t lose information
• Allow multiple users
• Stay consistent
• Easy to use

The "Database System" Approach:
Abstraction
• Abstract out all of the data

management functionality
into a separate layer

• Many applications can
access it

• Turns out this “separate
layer” keeps turning up in
many many many scenarios

• Makes sense to abstract it
out

DBMS

ATM application
Web application

Cell phone
application

Database System?

One possible (but clunky!) definition:

System for providing EFFICIENT, CONVENIENT,
and SAFE, MULTI-USER storage of and access
to MASSIVE amounts of PERSISTENT data

Database System?

Data: information on accounts, customers, balances, current
interest rates, transaction histories, etc.

MASSIVE: many TBs at a minimum for big banks; more if we
keep history of all transactions; even more if we keep images
of checks!

System for providing EFFICIENT, CONVENIENT, & SAFE, MULTI-USER
storage of and access to MASSIVE amounts of PERSISTENT data

Database System?

PERSISTENT: data lives on, beyond programs that
operate on it, even on system shutdown and power
failure.
➔ Can’t store data in memory, we have to rely on
stable storage (disk, flash)

System for providing EFFICIENT, CONVENIENT, & SAFE, MULTI-USER
storage of and access to MASSIVE amounts of PERSISTENT data

Database System?

MULTI-USER: many people/programs accessing same database,
or even same data, simultaneously ➔ Need controls

Alice @ her office orders
"The Selfish Gene”

$80

Bob @ home orders
“Guns, germs, and steel”

$100

Alice and Bob have $200 in their bank account

$130

System for providing EFFICIENT, CONVENIENT, & SAFE, MULTI-USER
storage of and access to MASSIVE amounts of PERSISTENT data

Database System?

SAFE:
• from system failures. E.g., money should not disappear or appear

from the account, due to a power failure!
Bob @ ATM: withdraw $50 from account #002

get balance from database;

if balance >= 50

then balance := balance - 50; // dispense cash

update balance in database;

• from malicious users

Power
failure here

System for providing EFFICIENT, CONVENIENT, & SAFE, MULTI-USER
storage of and access to MASSIVE amounts of PERSISTENT data

Database System?

CONVENIENT:
• simple commands to debit account, get balance, write statement, transfer funds, etc.
• also unpredicted queries should be easy
• shouldn’t require complex 100s of lines of code

EFFICIENT:
• don't search all files (of tens of millions of accounts) in order to get balance of one

account, get all accounts with low balances, get large transactions, etc.

System for providing EFFICIENT, CONVENIENT, & SAFE, MULTI-USER
storage of and access to MASSIVE amounts of PERSISTENT data

Why Direct Implementation is
Hard/Won’t Work
• Early database systems evolved from file systems
• Provided storage of MASSIVE amounts of PERSISTENT

data, to some extent
• SAFE?
• when system crashes, no guarantees on how program may

behave: we may lose data
• EFFICIENT?
• Does not intrinsically support fast access to data whose location

in file is not known: will need to write custom code

Database System?

System for providing EFFICIENT, CONVENIENT, and SAFE, MULTI-USER
storage of and access to MASSIVE amounts of PERSISTENT data

That’s why Database Systems were invented!

• Describe real-world entities
• Store large datasets persistently
• Query & update efficiently
• Change structure (e.g., add attributes)
• Handle concurrent updates
• Crash recovery
• Security and integrity

Databases, Database Systems and DBMSs

• What we’ve called a “Database System” is also known by
its complete name, Database Management System (DBMS)
• A DBMS is software that stores, manages, and facilitates

access to data.

• On the other hand, a database is a large, organized
collection of data.
• This is what a database system/DBMS manages
• But sometimes, databases are also used to refer to the

database system or DBMS itself
• Use should be clear from the context

Universal Symbol for a Database or DBMS

Why the Symbol?

Looks Like?

Platters on a Disk Drive

What is this class all about?
• Databases?
• What is a database?

• Database Management Systems?
• Implementation?

Examples of Database Systems
• Traditionally DBMS referred to relational database systems, or

RDBMSs, or simply relational databases

• Many other non-relational database systems exist:
• Graphs
• Document stores
• Key value stores
• What else?

• We will discuss what “relational” means

Berkeley Roots!
• Berkeley Roots!

• Ingres/Postgres
• Sybase
• Informix

Berkeley Roots cont
UC Berkeley

Oracle

IBM

• Berkeley Roots!
• Ingres/Postgres
• Sybase
• Informix

Will focus mostly on rel. database systems

• Why? Isn’t this old stuff?
• In fact, our main textbook is rather out of date (2003!)

• But… we will focus on Foundational System Principles that
transcends different types of DBMSs
• Reusable ideas and components
• Compositional approach

• Goal:
• You will be able to use existing & build new DBMS technologies!

You will learn...
• Data Oriented Programming with SQL
• Foundations of Data System Design
• Storage, indexing
• Query processing and optimization

• Transactions
• Concurrency, Consistency, Recovery

• Data Modeling
• Application-level representations of data

Principles
• Data Independence
• Declarative Programming
• Rendezvous in Time and Space
• Isolation and consistency
• Data representations

Systems
We will examine various levels of a DBMS

Concurrency Control

Recovery

Database
Management

System

Database

Query Parsing
& Optimization

Relational Operators

Files and Index
Management

Buffer Management

Disk Space Management

What is this class all about?, cont
• Databases?
• What is a database?

• Database Management Systems?
• Implementation?
• Big Ideas in Database Management Systems
• Principles and Algorithms
• System Designs
• What makes computer science a “science”

Essential Queries, Pt 3
• Why take this class?
• What is this class all about?
• Who is running this?
• How will this class work?

Who Are We?

Alvin Cheung
PhD from MIT

Databases-meets-PL
Asst Prof @ Berkeley CS

Aditya Parameswaran
PhD from Stanford

Databases-meets-HCI
Asst Prof @ Berkeley CS and I School

Your Amazing Head TAs

Saurav
Chhatrapati

Ethan
Shang

Jerry
Song

Chris
Wong

Your Amazing TAs

Justin
Cheng

Samy
Cherfaoui

Gabe
Fierro

Amy
Hung

Your Amazing TAs

Kayli
Jiang

Su Min
Kim

Shreyas
Krishnaswamy

Noah
Kuo

Your Amazing TAs

Kaitlyn
Lee

Mantej
Panesar

Aditya
Ramkumar

Allen
Shen

Your Amazing TAs

Dylan
Tran

Jennifer
Tsui

Sabrina
Zhao

You!

• This class is in your hands.
• Use Piazza as a resource to connect with others like you

• Everything is doable, with steady work.
• Our goal is to really help you learn the material, not stress you out

• We will help pace you
• Weekly section worksheets, vitamins keep you on schedule
• Weekly sections and office hours
• Multi-week programming projects to help you hone in your skills
• (More on all of this later)

Essential Queries, Part 4
• Why take this class?
• What is this class all about?
• Who is running this?
• How will this class work?

What is different about CS 186 this
semester?

• Everything now moved online L
• Lectures, sections, OHs

• Poll for students for time zones is out – just so that we
are aware of where you are and make the class as
convenient as we possibly can (given our resources)

• We will play by ear as we go along
• If there are issues due to COVID-19, please feel free to

raise them on Piazza

What is different about CS 186 this
semester? (Part 2)

• CS186 has been taught entirely MOOC-style with videos
recorded in 2018 courtesy Prof. Joe Hellerstein

• We (Alvin & Aditya) will be teaching it synchronously
• We will cover a similar (but possibly not identical) set of

concepts
• Those videos are still available if you’d like a different

perspective
• Since it’s our first time teaching this class (and a class of

this size!) bear with us as we figure things out. There will be
hiccups.

Main Points of Information
• Newly Revamped(!) Course Website: cs186berkeley.net
• Syllabus
• Calendar: sections and OH
• Lecture slides
• HW

• Piazza discussion group
• All this info linked on website.

http://cs186berkeley.net/
https://piazza.com/berkeley/fall2018/cs186

Workload: Lectures

• Two lectures per week
• Synchronous on zoom, also recorded
• Please try to attend if you can!

• Strongly suggest turning on your video to make the experience less
dull for everyone
• If you do so, please don’t do anything you won’t do in an ordinary

class
• e.g., take calls, cook meals, take a shower, …

• Please keep your audio off if you’re not speaking
• If you need to ask questions, please use the “raise hand” feature: we

will monitor and get to you!
• Please engage with us

• We love questions! We love answers!

Workload
• OH start this week [but will start in full force next week]
• Vitamins: simple weekly online quizzes

• You can drop 2
• You need to complete exercises to submit the vitamin

• 5-6 programming projects (next slide)
• 2 midterm exams
• 1 final exam

• Exam format TBD [Waiting for guidance from campus administration]
• Exam has been moved to a different group (group 3)

• Tentative schedule for programming projects and exams on the
website.

https://sites.google.com/site/cs186fall2018/home/schedule-and-notes

Programming Projects
• Real-world focus

• SQL querying: basics and algorithmics
• Building pieces of a DBMS

• B+-tree indexes
• Join Algorithms
• Dynamic Programming Query Optimizer
• Concurrency (2PL) and Recovery (ARIES)
• [A fun extension]

• Project 1 goes out next week!!

• For the first time, latter projects will be in teams of 2 [Details TBD]

Deadlines and Slip Time
• You have up to 5 days (up from 3 last sem) of slip time
• Can be used for projects (unless otherwise noted)
• Counted at the granularity of days

• gradescope idiosyncracies

• Slip time is a safety net, not convenience
• You should not plan on using them
• If you use all 5 days you are doing it wrong

Academic Integrity
• We trust that you will do your own work
• Zero Tolerance. It is uncool. Don’t.

• We have the technology to find out.
• Most cheating happens due to stress

• Plan ahead and stay on schedule to minimize stress
• You have built-in safety valves

• Dropped vitamins
• Slip days on homeworks: save for when you need them
• Midterms weighted to the higher grade [exact policy TBD]
• Keep an eye on the course drop date. Don’t take too many courses!

• Feeling stressed? Reach out!
• Campus resources
• Course staff is here for you
• Incompletes are appropriate for health issues of any kind

• Staff perspective
• We want you to learn and to succeed
• We want things to be fair, so need to stick to rules

Bottom line
Please don’t cheat!!

https://uhs.berkeley.edu/apiconnect/tools-managing-stress

Staying in touch
• All class communication via Piazza

• tiny.cc/cs186-fall20-piazza
• We are already live

• Announcements and discussion
• read it regularly
• post all questions/comments there
• answer each other’s questions!

• Direct email to Prof or TAs is not a good idea
• And will likely not get answered unless sensitive
• Private posts on piazza to instructors is a much better bet

https://tiny.cc/

Now onto the real stuff…

