
Relational Model and SQL
Concepts
Syntax
Basic Queries

Alvin Cheung
Aditya Parameswaran
Reading: R & G Chapter 5

Slide Deck Title

This Lecture

• The Relational Model

• SQL Basics

Slide Deck Title

House Zoom Rules

• Please turn on video if you feel comfortable

• Unmute for questions or comments
• Raise hand / type in chat window works too

Slide Deck Title

Relational Terminology
• Database: Set of named Relations

ssn integer first text last text
123456789 wei jones
987654321 apurva lee
543219876 sara manning

Slide Deck Title

Relational Terminology, Pt 2.
• Database: Set of named Relations
• Relation (aka Table):

– Schema: description (“metadata”)
– Instance: set of data satisfying the schema

ssn: integer first: text last: text

123456789 wei jones

987654321 apurva lee

543219876 sara manning

Slide Deck Title

Relational Terminology, Pt. 3
• Database: Set of named Relations
• Relation (aka Table):

– Schema: description (“metadata”)
– Instance: set of data satisfying the schema

• Attribute (aka Column, Field)
first: text

wei

apurva

sara

Attribute

Slide Deck Title

Relational Terminology, Pt. 4
• Database: Set of named Relations
• Relation (aka Table):

• Schema: description (“metadata”)
• Instance: set of data satisfying the schema

• Attribute (aka Column, Field)
• Tuple (aka Record, Row)

543219876 sara manning Tuple

Slide Deck Title

Relational Terminology, Pt. 5
• Database: Set of named Relations
• Relation (aka Table):

• Schema: description (“metadata”)
• Instance: set of data satisfying the schema

• Attribute (aka Column, Field)
• Tuple (aka Record, Row)
• Cardinality:

• # of tuples in a relation

Slide Deck Title

To summarize

ssn: integer first: text last: text

123456789 wei jones

987654321 apurva lee

543219876 sara manning

columns / attributes / fields

rows /
tuples /
records

Cardinality: 3

Slide Deck Title

Relational Tables
• Schema is fixed:

– unique attribute names, atomic (aka primitive) types
• Tables are NOT ordered

• they are sets or multisets (bags)
• Tables are FLAT

• No nested attributes
• Tables DO NOT prescribe how they are implemented / stored on

disk
• This is called physical data independence

Slide Deck Title

Table Implementation

• How would you implement this?
cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

Slide Deck Title

Table Implementation

• How would you implement this?
cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

Row major: as an array of objects

GizmoWorks
USA
20000
True

Canon
Japan
50000
True

Hitachi
Japan
30000
True

HappyCam
Canada
500
False

Slide Deck Title

Table Implementation

• How would you implement this?
cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

Column major: as one array per attribute
GizmoWorks Canon Hitachi HappyCam

USA Japan Japan Canada

True True True False

20000 50000 30000 500

Slide Deck Title

Table Implementation

• How would you implement this?

Physical data independence
The logical definition of the data remains
unchanged, even when we make changes to the
actual implementation

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

Slide Deck Title

Relation is not the only data model

Peter

Mary John

Phil

As a graph

OR

Person1: text Person2: text is_friend: int

Peter John 1

John Mary 0

Mary Phil 1

Phil Peter 1

… … …

As a relation

We will learn the tradeoffs of different
data models in the semester

Example: storing FB friends

Quick Check 1

• Why is this not a relation?

num:
integer

street: text zip: integer

84 Maple Ave 54704

22 High Street

75 Hearst Ave 94720

76425

Quick Check 2

• Why is this not a relation?

num: integer street: text num: integer

84 Maple Ave 54704

22 High Street 76425

75 Hearst Ave 94720

Quick Check 3

• Why is this not a relation?

first: text last: text addr: address

wei jones (84, ‘Maple’, 54704)

apurva lee (22, ‘High’, 76425)

sara manning (75, ‘Hearst’, 94720)

Slide Deck Title

First Normal Form
• All relations must be flat: we say that the relation is in first normal

form
cname country no_employees for_profit
Canon Japan 50000 Y
Hitachi Japan 30000 Y

Slide Deck Title

First Normal Form
• All relations must be flat: we say that the relation is in first normal

form
• E.g., we want to add products manufactured by each company:

cname country no_employees for_profit
Canon Japan 50000 Y
Hitachi Japan 30000 Y

Slide Deck Title

First Normal Form
• All relations must be flat: we say that the relation is in first normal

form
• E.g., we want to add products manufactured by each company:

cname country no_employees for_profit
Canon Japan 50000 Y
Hitachi Japan 30000 Y

cname country no_employees for_profit products

Canon Japan 50000 Y

Hitachi Japan 30000 Y
pname price category

AC 300 Appliance

pname price category

SingleTouch 149.99 Photography

Gadget 200 Toy

Slide Deck Title

First Normal Form
• All relations must be flat: we say that the relation is in first normal

form
• E.g., we want to add products manufactured by each company:

cname country no_employees for_profit
Canon Japan 50000 Y
Hitachi Japan 30000 Y

cname country no_employees for_profit products

Canon Japan 50000 Y

Hitachi Japan 30000 Y
pname price category

AC 300 Appliance

pname price category

SingleTouch 149.99 Photography

Gadget 200 Toy

Non-1NF!

Slide Deck Title

First Normal Form

cname country no_employees for_profit
Canon Japan 50000 Y
Hitachi Japan 30000 Y

pname price category manufacturer
SingleTouch 149.99 Photography Canon
AC 300 Appliance Hitachi
Gadget 200 Toy Canon

Company

Products

Now it’s in 1NF

Slide Deck Title

SQL Roots

• Developed @IBM Research in the 1970s
• System R project
• Vs. Berkeley’s Quel language

• Commercialized/Popularized in the 1980s
• IBM started the db2 product line
• IBM beaten to market by a startup called Oracle

Slide Deck Title

SQL’s Persistence
• Over 40 years old!
• Not the only language for querying relations

• Questioned repeatedly
• 90’s: Object-Oriented DBMS (OQL, etc.)
• 2000’s: XML (Xquery, Xpath, XSLT)
• 2010’s: NoSQL & MapReduce

• SQL keeps re-emerging as the standard
• Even Hadoop, Spark etc. mostly used via SQL
• May not be perfect, but it is useful

Slide Deck Title

SQL Pros and Cons
• Declarative!

– Say what you want, not how to get it
• Implemented widely

– With varying levels of efficiency, completeness
• Constrained

– Not targeted at Turing-complete tasks
• General-purpose for data computation and feature-rich

– many years of added features
– extensible: callouts to other languages, data sources

Slide Deck Title

SQL Language
• Two sublanguages:
• DDL – Data Definition Language

• Define and modify schema
• DML – Data Manipulation Language

• Queries can be written intuitively

• RDBMS responsible for efficient evaluation
• Choose and run algorithms for declarative queries

• Choice of algorithm must not affect query answer.

Slide Deck Title

Example Database

sid sname rating age
1 Fred 7 22
2 Jim 2 39
3 Nancy 8 27

Sailors

sid bid day
1 102 9/12/2015
2 102 9/13/2015

Reserves

bid bname color
101 Nina red
102 Pinta blue
103 Santa Maria red

Boats

Slide Deck Title

The SQL DDL: Sailors
CREATE TABLE Sailors (

sid INTEGER,
sname CHAR(20),
rating INTEGER,
age FLOAT)

sid sname rating age

1 Fred 7 22

2 Jim 2 39

3 Nancy 8 27

Slide Deck Title

The SQL DDL: Sailors, Pt. 2
CREATE TABLE Sailors (

sid INTEGER,
sname CHAR(20),
rating INTEGER,
age FLOAT
PRIMARY KEY (sid));

sid sname rating age

1 Fred 7 22

2 Jim 2 39

3 Nancy 8 27

Slide Deck Title

The SQL DDL: Primary Keys
CREATE TABLE Sailors (

sid INTEGER,
sname CHAR(20),
rating INTEGER,
age FLOAT,
PRIMARY KEY (sid))

• Primary Key column(s)
– Provides a unique “lookup key” for the relation
– Cannot have any duplicate values
– Can be made up of >1 column
• E.g. (firstname, lastname)

sid sname rating age

1 Fred 7 22
2 Jim 2 39
3 Nancy 8 27

Slide Deck Title

The SQL DDL: Boats
CREATE TABLE Sailors (

sid INTEGER,
sname CHAR(20),
rating INTEGER,
age FLOAT,
PRIMARY KEY (sid));

CREATE TABLE Boats (
bid INTEGER,
bname CHAR (20),
color CHAR(10),
PRIMARY KEY (bid));

bid bname color
101 Nina red
102 Pinta blue
103 Santa Maria red

sid sname rating age

1 Fred 7 22
2 Jim 2 39
3 Nancy 8 27

Slide Deck Title

The SQL DDL: Reserves
CREATE TABLE Sailors (

sid INTEGER,
sname CHAR(20),
rating INTEGER,
age FLOAT,
PRIMARY KEY (sid));

CREATE TABLE Boats (
bid INTEGER,
bname CHAR (20),
color CHAR(10),
PRIMARY KEY (bid));

CREATE TABLE Reserves (
sid INTEGER,
bid INTEGER,
day DATE,
PRIMARY KEY (sid, bid, day);

bid bname color
101 Nina red
102 Pinta blue
103 Santa Maria red

sid sname rating age
1 Fred 7 22
2 Jim 2 39
3 Nancy 8 27

sid bid day
1 102 9/12
2 102 9/13

Slide Deck Title

The SQL DDL: Reserves Pt. 2
CREATE TABLE Sailors (

sid INTEGER,
sname CHAR(20),
rating INTEGER,
age FLOAT,
PRIMARY KEY (sid));

CREATE TABLE Boats (
bid INTEGER,
bname CHAR (20),
color CHAR(10),
PRIMARY KEY (bid));

CREATE TABLE Reserves (
sid INTEGER,
bid INTEGER,
day DATE,
PRIMARY KEY (sid, bid, day),
FOREIGN KEY (sid) REFERENCES Sailors,

bid bname color
101 Nina red
102 Pinta blue
103 Santa Maria red

sid sname rating age
1 Fred 7 22
2 Jim 2 39
3 Nancy 8 27

sid bid day
1 102 9/12
2 102 9/13

Slide Deck Title

The SQL DDL: Foreign Keys
CREATE TABLE Sailors (

sid INTEGER,
sname CHAR(20),
rating INTEGER,
age FLOAT,
PRIMARY KEY (sid));

CREATE TABLE Boats (
bid INTEGER,
bname CHAR (20),
color CHAR(10),
PRIMARY KEY (bid));

CREATE TABLE Reserves (
sid INTEGER,
bid INTEGER,
day DATE,
PRIMARY KEY (sid, bid, day),
FOREIGN KEY (sid) REFERENCES Sailors,
FOREIGN KEY (bid) REFERENCES Boats);

bid bname color
101 Nina red
102 Pinta blue
103 Santa Maria red

sid sname rating age
1 Fred 7 22
2 Jim 2 39
3 Nancy 8 27

sid bid day
1 102 9/12
2 102 9/13

Slide Deck Title

The SQL DDL: Foreign Keys Pt. 2
• Foreign key references a table

– Via the primary key of that table
• Doesn’t need to have the same name as

the referenced primary key

CREATE TABLE Reserves (
sid INTEGER,
bid INTEGER,
day DATE,
PRIMARY KEY (sid, bid, day),
FOREIGN KEY (sid) REFERENCES Sailors,
FOREIGN KEY (bid) REFERENCES Boats);

bid bname color
101 Nina red
102 Pinta blue
103 Santa Maria red

sid sname rating age
1 Fred 7 22
2 Jim 2 39
3 Nancy 8 27

sid bid day
1 102 9/12
2 102 9/13

Slide Deck Title

The SQL DML
• Find all 27-year-old sailors:

SELECT *
FROM Sailors AS S
WHERE S.age=27;

• To find just names and rating, replace
the first line to:

SELECT S.sname,
S.rating

Sailors
sid sname rating age

1 Fred 7 22
2 Jim 2 39
3 Nancy 8 27

Slide Deck Title

Basic Single-Table Queries
• SELECT [DISTINCT] <column expression list>

FROM <single table>
[WHERE <predicate>]

• In this simple version:
– Produce all tuples in the table that satisfy the predicate
– Output the expressions in the SELECT list
– Expression can be a column reference, or an arithmetic expression over

column refs

Slide Deck Title

Distinct and Alias
SELECT DISTINCT S.name, S.gpa
FROM students [AS] S
WHERE S.dept = 'CS’

• Return all unique (name, GPA) pairs from students
• DISTINCT specifies removal of duplicate rows before output
• Can refer to the students table as S, this is called an alias

Slide Deck Title

Ordering
• SELECT S.name, S.gpa, S.age*2 AS a2

FROM Students S
WHERE S.dept = 'CS'
ORDER BY S.gpa, S.name, a2;

• ORDER BY clause specifies output to be sorted
– Numeric ordering for “number-like” attributes (int, real, etc)
– Lexicographic ordering otherwise (!!) (varchar, blob, etc)

• Obviously must refer to columns in the output
– Note the AS clause for naming output columns!

Slide Deck Title

Ordering
• SELECT S.name, S.gpa, S.age*2 AS a2

FROM Students S
WHERE S.dept = 'CS'
ORDER BY S.gpa DESC, S.name ASC, a2;

• Ascending order by default, but can be overridden
– DESC flag for descending, ASC for ascending
– Can mix and match, lexicographically

Slide Deck Title

Setting limits
• SELECT S.name, S.gpa, S.age*2 AS a2

FROM Students S
WHERE S.dept = 'CS'
ORDER BY S.gpa DESC, S.name ASC, a2;
LIMIT 3 ;

• Only produces the first <integer> output rows
• Typically used with ORDER BY
– Otherwise the output is non-deterministic
– Not a “pure” declarative construct in that case – output set depends on

algorithm for query processing

Slide Deck Title

Aggregates
• SELECT [DISTINCT] AVG(S.gpa)

FROM Students S
WHERE S.dept = 'CS'

• Before producing output, compute a summary (aka an aggregate) of some
arithmetic expression

• Produces 1 row of output
– with one column in this case

• Other aggregates: SUM, COUNT, MAX, MIN (and others)

Slide Deck Title

DISTINCT Aggregates
Are these the same or different?

SELECT COUNT(DISTINCT S.name)
FROM Students S
WHERE S.dept = 'CS';

SELECT DISTINCT COUNT(S.name)
FROM Students S
WHERE S.dept = 'CS’;

Slide Deck Title

GROUP BY
SELECT [DISTINCT] AVG(S.gpa), S.dept
FROM Students S
GROUP BY S.dept

• Partition table into groups with same GROUP BY column values
– Can group by a list of columns

• Produce an aggregate result per group
– Cardinality of output = # of distinct group values

• Note: only grouping columns or aggregated values can appear in the
SELECT list

Need to be Careful with GROUP BY…
Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

SELECT product,
max(quantity)

FROM Purchase
GROUP BY product

Purchase

Slide Deck Title

Need to be Careful with GROUP BY…

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

SELECT product,
max(quantity)

FROM Purchase
GROUP BY product

Product Max(quantity)

Bagel 20

Banana 50

Purchase

Slide Deck Title

Need to be Careful with GROUP BY…

SELECT product, quantity
FROM Purchase
GROUP BY product
-- what does this mean?

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

SELECT product,
max(quantity)

FROM Purchase
GROUP BY product

Product Max(quantity)

Bagel 20

Banana 50

Purchase

Slide Deck Title

Need to be Careful with GROUP BY…

SELECT product, quantity
FROM Purchase
GROUP BY product
-- what does this mean?

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

SELECT product,
max(quantity)

FROM Purchase
GROUP BY product

Product Max(quantity)

Bagel 20

Banana 50

Product Quantity

Bagel 20

Banana ??

Purchase

Slide Deck Title

Need to be Careful with GROUP BY…

SELECT product, quantity
FROM Purchase
GROUP BY product
-- what does this mean?

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

SELECT product,
max(quantity)

FROM Purchase
GROUP BY product

Product Max(quantity)

Bagel 20

Banana 50

Product Quantity

Bagel 20

Banana ??

Purchase

Slide Deck Title

Need to be Careful with GROUP BY…

SELECT product, quantity
FROM Purchase
GROUP BY product
-- what does this mean?

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

SELECT product,
max(quantity)

FROM Purchase
GROUP BY product

Product Max(quantity)

Bagel 20

Banana 50

Product Quantity

Bagel 20

Banana ??

Everything in SELECT must be

either a GROUP-BY attribute, or an aggregate

Purchase

Slide Deck Title

HAVING
SELECT [DISTINCT] AVG(S.gpa), S.dept
FROM Students S
GROUP BY S.dept
HAVING COUNT(*) > 2

• The HAVING predicate filters groups
• HAVING is applied after grouping and aggregation
– Hence can contain anything that could go in the SELECT list
– i.e., aggs or GROUP BY columns

• HAVING can only be used in aggregate queries
• It’s an optional clause

SQL DML:
General Single-Table Queries

• SELECT [DISTINCT] <column expression list>
FROM <single table>
[WHERE <predicate>]
[GROUP BY <column list>
[HAVING <predicate>]]
[ORDER BY <column list>]
[LIMIT <integer>];

Summary

• Many query languages available for the relational
data model
• SQL is one of them that we will focus in this class

• Modern SQL extends set-based relational model
• some extra goodies for duplicate row (bags), non-atomic

types…
• Typically, many ways to write a query

– DBMS figures out a fast way to execute a query,
regardless of how it is written

