
SQL II

R & G - Chapter 5

Slide Deck Title

SELECT DISTINCT
• SELECT DISTINCT (col list) will remove duplicates of tuples

corresponding to the col list

• You can only apply DISTINCT at the start of a list of columns

• So:

• SELECT A, DISTINCT B … is not permitted

• But SELECT COUNT(DISTINCT A) … is OK

• Count of number of distinct values of A

SQL
• So far: Basic Single-Table DML queries

• SELECT (with DISTINCT)/FROM/WHERE
• Aggregation: GROUP BY, HAVING
• Presentation: ORDER BY, LIMIT

• Extending basic SELECT/FROM/WHERE

• Multi-table queries: JOINs

• Aliasing in FROM and SELECT

• Expressions in SELECT

• Expressions, string comparisons, connectives in WHERE

• Extended JOINs

• The use of NULLS

• Query Composition

• Set-oriented operations

• Nested queries

• Views

• Common table expressions

Lots to cover!

Use vitamins and sections

to dig deeper.

Slide Deck Title

SQL DML 1: 
Basic Single-Table Queries

• SELECT [DISTINCT] <column expression list> 
FROM <single table> 
[WHERE <predicate>] 
[GROUP BY <column list> 
[HAVING <predicate>]] 
[ORDER BY <column list>] 
[LIMIT <integer>];

Slide Deck Title

Conceptual Order of Evaluation
(5) SELECT [DISTINCT] <col exp. list>
(1) FROM <single table>
(2) [WHERE <predicate>]

(3) [GROUP BY <column list>
(4) [HAVING <predicate>]]

(6) [ORDER BY <column list>] 
(7) [LIMIT <integer>];

Will omit ORDER BY and LIMIT for now since they are primarily for presentation

Slide Deck Title

SQL DML 1: Basic Single-Table Queries
Conceptual Order of Evaluation

(5) SELECT [DISTINCT] <col exp. list> ☛ remove (project) cols not found in list, then remove dupl. rows 
(1) FROM <single table> ☛ for each tuple in table 
(2) [WHERE <predicate>] ☛ remove tuples that don’t satisfy predicate (selection condition)  
(3) [GROUP BY <column list> ☛ form groups and perform all necessary aggregates per group 
(4) [HAVING <predicate>]] ☛ remove groups that don’t satisfy predicate  

Q: Which aggregates are necessary?

A: All the aggregates that will be referred to in the HAVING or SELECT clause

Remember: this is all conceptual — actual approach for execution may be very different. But will provide the
same result as this conceptual approach.

Slide Deck Title

Putting it all together
• SELECT S.dept, AVG(S.gpa), COUNT(*) 

FROM Students AS S 
WHERE S.state = 'MA' 
GROUP BY S.dept  
HAVING MAX(S.gpa) >= 2 
ORDER BY S.dept;

• Students (name, dept, gpa, state)

• Start with all tuples in Students

• Throw away those that aren’t from MA

• Group by S.dept, compute aggregates MAX(S.gpa), AVG(S.gpa), COUNT(*)

• Throw away groups that don’t have MAX(S.gpa)>=2

• Retain only S.dept, AVG(S.GPA), COUNT(*)

• Order by S.dept

Slide Deck Title

Multi-Table Queries: Joins
• SELECT [DISTINCT] <column expression list> 

FROM <table1 [AS t1], ... , tableN [AS tn]> 
[WHERE <predicate>] 
[GROUP BY <column list>[HAVING <predicate>]] 
[ORDER BY <column list>];

Slide Deck Title

SQL DML 1: Basic Single-Table Queries
Conceptual Order of Evaluation

Let’s not worry about GROUP BY and HAVING for now, back to good old SELECT-FROM-WHERE

Extending it to GROUP BY and HAVING is straightforward (as is ORDER BY and LIMIT)

(5) SELECT [DISTINCT] <col exp. list> ☛ remove (project out) cols not found in list, then remove duplicate rows 
(1) FROM <table1><table2>… ☛ for each combinations of tuples in cross product of tables  
(2) [WHERE <predicate>] ☛ remove tuple combinations that don’t satisfy predicate (selection condition) 
(3) [GROUP BY <column list> ☛ form groups and perform all necessary aggregates per group 
(4) [HAVING <predicate>]] ☛ remove groups that don’t satisfy predicate

Another way to think about a multi-table query is a query on a new relation that is the cross-product of tables in the

FROM clause.

This is likely a really bad way to evaluate this query! We will discuss better ways subsequently.

Slide Deck Title

Cross (Cartesian) Product
• FROM clause: all pairs of tuples, concatenated

sid sname rating age

1 Popeye 10 22

2 OliveOyl 11 39

3 Garfield 1 27

4 Bob 5 19

Sailors
sid bid day

1 102 9/12

2 102 9/13

1 101 10/01

Reserves

sid sname rating age sid bid day

1 Popeye 10 22 1 102 9/12

1 Popeye 10 22 2 102 9/13

1 Popeye 10 22 1 101 10/01

2 OliveOyl 11 39 1 102 9/12

… … … … … … ...

Slide Deck Title

Find sailors who’ve reserved  
a boat

SELECT S.sid, S.sname, R.bid
FROM Sailors AS S, Reserves AS R
WHERE S.sid=R.sid

sid sname rating age

1 Popeye 10 22

2 OliveOyl 11 39

3 Garfield 1 27

4 Bob 5 19

sid bid day

1 102 9/12

2 102 9/13

1 101 10/01

sid sname rating age sid bid day

1 Popeye 10 22 1 102 9/12

1 Popeye 10 22 2 102 9/13

1 Popeye 10 22 1 101 10/01

2 OliveOyl 11 39 1 102 9/12

… … … … … … ...

Slide Deck Title

Find sailors who’ve reserved  
a boat cont

sid sname rating age

1 Popeye 10 22

2 OliveOyl 11 39

3 Garfield 1 27

4 Bob 5 19

sid bid day

1 102 9/12

2 102 9/13

1 101 10/01

sid sname bid

1 Popeye 102

1 Popeye 101

2 OliveOyl 102

SELECT S.sid, S.sname, R.bid
FROM Sailors AS S, Reserves AS R
WHERE S.sid=R.sid

Slide Deck Title

Table Aliases and Column Name Aliases
SELECT Sailors.sid, sname, bid
FROM Sailors, Reserves
WHERE Sailors.sid = Reserves.sid

Relation (range) variables (Sailors, Reserves) help refer to columns that are shared across relations.

We can also rename relations and use new variables (“AS” is optional for FROM)

SELECT S.sid, sname, bid
FROM Sailors AS S, Reserves AS R
WHERE S.sid = R.sid

We can also rename attributes too!

SELECT S.sid AS sailorid, sname AS sailorname, bid AS boatid
FROM Sailors AS S, Reserves AS R
WHERE S.sid = R.sid

Slide Deck Title

More Aliases: Self-Joins

SELECT x.sname AS sname1,
 x.age AS age1,
 y.sname AS sname2,
 y.age AS age2
FROM Sailors AS x, Sailors AS y
WHERE x.age > y.age

• Query for pairs of sailors where one is older than the other

• Table aliases in the FROM clause

• Needed when the same table used multiple times (“self-join”)

sname1 age1 sname2 age2

Popeye 22 Bob 19

OliveOyl 39 Popeye 22

OliveOyl 39 Garfield 27

OliveOyl 39 Bob 19

Garfield 27 Popeye 22

Garfield 27 Bob 19

sid sname rating age

1 Popeye 10 22

2 OliveOyl 11 39

3 Garfield 1 27

4 Bob 5 19

Slide Deck Title

Arithmetic Expressions
• SELECT S.age, S.age-5 AS age1, 2*S.age AS age2

FROM Sailors AS S

WHERE S.sname = 'Popeye’

• SELECT S1.sname AS name1, S2.sname AS name2

FROM Sailors AS S1, Sailors AS S2

WHERE 2*S1.rating = S2.rating - 1 sid sname rating age

1 Popeye 10 22

2 OliveOyl 11 39

3 Garfield 1 27

4 Bob 5 19

Slide Deck Title

String Comparisons
• Old School SQL

SELECT S.sname
FROM Sailors S
WHERE S.sname LIKE ‘B_%’

_ = any single char; % = zero or more chars

Returns Bob

• Standard Regular Expressions
SELECT S.sname
FROM Sailors S
WHERE S.sname ~ ‘B.*’

. = any char; * = repeat (zero or more instances of previous)

Note: can match anywhere in the string

Returns Bob and McBob

sid sname rating age

1 Popeye 10 22

2 OliveOyl 11 39

3 Garfield 1 27

4 Bob 5 19

5 McBob 3 35

SQLite note: ~ not supported.

Slide Deck Title

Boolean Connectives

Sid’s of sailors who reserved a red OR a green boat

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND

(B.color='red' OR B.color='green')

bid bname color

102 Titanic green

101 Lusitania red

100 Mayflower orange

sid bid day

1 102 9/12

2 102 9/13

1 100 10/01

Boats Reserves

SQL
• So far: Basic Single-Table DML queries

• SELECT (with DISTINCT)/FROM/WHERE

• Aggregation: GROUP BY, HAVING

• Presentation: ORDER BY, LIMIT

• Extending basic SELECT/FROM/WHERE

• Multi-table queries: JOINs

• Aliasing in FROM and SELECT

• Expressions in SELECT

• Expressions, string comparisons, connectives in WHERE

• Extended JOINs
• The use of NULLS

• Query Composition

• Set-oriented operations

• Nested queries

• Views

• Common table expressions

Slide Deck Title

Join Variants
SELECT <column expression list>
FROM table_name
[INNER | NATURAL
 | {LEFT |RIGHT | FULL } OUTER] JOIN table_name
ON <qualification_list>

WHERE …

• INNER is default

• Same thing as what we’ve done so far, offers no additional convenience

• Just present as a contrast to NATURAL and OUTER

Slide Deck Title

Reminder
• Turn on video if you can

• Turn off audio except when speaking

• Don’t do anything you wouldn’t do normally

• Vitamin 1 deadline has been pushed

• Project 1 should still be on track

Slide Deck Title

Inner/Natural Joins
SELECT s.sid, s.sname, r.bid
FROM Sailors s, Reserves r
WHERE s.sid = r.sid
AND s.age > 20;

SELECT s.sid, s.sname, r.bid
FROM Sailors s INNER JOIN Reserves r
ON s.sid = r.sid
WHERE s.age > 20;

SELECT s.sid, s.sname, r.bid
FROM Sailors s NATURAL JOIN Reserves r
WHERE s.age > 20;

• ALL 3 ARE EQUIVALENT!
• “NATURAL” means “equi-join” (i.e., identical values) for pairs of attributes with the same name

sid sname rating age

1 Popeye 10 22

2 OliveOyl 11 39

3 Garfield 1 27

4 Bob 5 19

sid bid day

1 102 9/12

2 102 9/13

1 101 10/01

Slide Deck Title

Left Outer Join
• Returns all matched rows, and preserves all unmatched rows from the table on the left of

the join clause

• (use NULLs in fields of non-matching tuples)

• We’ll talk about NULLs in a bit, but for now, think of it as N/A

SELECT s.sid, s.sname, r.bid
FROM Sailors s LEFT OUTER JOIN Reserves r
ON s.sid = r.sid;

Returns all sailors & bid for boat in any

of their reservations

Note: no match for s.sid? r.bid IS NULL!

(3, Garfield, NULL) (4, Bob, NULL) in output

sid sname rating age

1 Popeye 10 22

2 OliveOyl 11 39

3 Garfield 1 27

4 Bob 5 19

sid bid day

1 102 9/12

2 102 9/13

1 101 10/01

Slide Deck Title

Right Outer Join
• Returns all matched rows, and preserves all unmatched rows from the table

on the right of the join clause

• (use NULLs in fields of non-matching tuples)

SELECT r.sid, b.bid, b.bname
FROM Reserves r RIGHT OUTER JOIN Boats b
ON r.bid = b.bid

Returns all boats and sid for any sailor  
associated with the reservation.

Note: no match for b.bid? r.sid IS NULL!

Slide Deck Title

Full Outer Join
• Returns all (matched or unmatched) rows from the tables on both sides of the join

clause

SELECT r.sid, b.bid, b.bname
FROM Reserves r FULL OUTER JOIN Boats b
ON r.bid = b.bid

• Returns all boats & all information on reservations

• No match for r.bid?

• b.bid IS NULL AND b.bname IS NULL!

• No match for b.bid?

• r.sid IS NULL!

SQLite note: RIGHT/FULL OUTER JOIN not supported.

Slide Deck Title

Brief Detour: NULL Values
• Values for any data type can be NULL

• Indicates the value is present but unknown or is inapplicable

• Also comes naturally from Outer joins

• The presence of null complicates many issues. E.g.:

• Selection predicates (WHERE)

• Aggregation

Slide Deck Title

NULL in the WHERE clause

SELECT * FROM sailors
WHERE rating > 8;

Q: Should Popeye be in the output?

Not really.

Likewise for

SELECT * FROM sailors
WHERE rating <= 8;

sid sname rating age

1 Popeye NULL 22

2 OliveOyl 11 39

3 Garfield 1 27

4 Bob 5 19

Slide Deck Title

NULL in the WHERE clause

SELECT * FROM sailors
WHERE rating > 8 OR rating <= 8;

This is really funky — we have a tautology in the WHERE clause, but Popeye will still not be output

To force certain outputs can use IS NULL or IS NOT NULL conditions

SELECT * FROM sailors
WHERE rating > 8 OR rating <= 8 OR rating IS NULL;

This will correctly output all tuples in this setting

More generally, we need an extension to Boolean logic to support this

sid sname rating age

1 Popeye NULL 22

2 OliveOyl 11 39

3 Garfield 1 27

4 Bob 5 19

Slide Deck Title

Correctly Reasoning about NULLs
• Several Ingredients:

• We need a way to evaluate unit predicates, a way to combine them, and a way to decide whether to output

• Ingredient 1: Evaluating unit predicates

• (x op NULL) evaluates to NULL (IDK!)

SELECT 100 = NULL;
SELECT 100 < NULL;

• IS NULL evaluates to True if NULL, False otherwise
• Ingredient 3: Deciding to output

• When the WHERE evaluates to NULL, do not output the tuple

SELECT * FROM sailors;
SELECT * FROM sailors WHERE rating > 8;
SELECT * FROM sailors WHERE rating <= 8;

• Ingredient 2: Combining predicates

• Three-valued logic, an extension of two-valued (Boolean) logic

Slide Deck Title

NULL in Boolean Logic
Three-valued logic: truth tables!

Let’s build intuition by going through examples

SELECT * FROM sailors WHERE rating > 8 OR rating <= 8;

SELECT * FROM sailors WHERE NOT (rating > 8);

SELECT * FROM sailors WHERE rating > 8 OR TRUE;

General rule: NULL values are treated as “I Don’t Know” — can be either true or false

AND T F N

T T F N

F F F F

N N F N

OR T F N

T T T T

F T F N

N T N N

NOT T F N

F T N

Slide Deck Title

NULL and Aggregation
General rule: NULL **column values** are ignored by aggregate functions

SELECT count(*) FROM sailors;

SELECT count(rating) FROM sailors;

SELECT sum(rating) FROM sailors;

SELECT avg(rating) FROM sailors;

Slide Deck Title

NULL and Aggregation
General rule: NULL **column values** are ignored by aggregate functions

SELECT count(*) FROM sailors; // count sailors

SELECT count(rating) FROM sailors; // count sailors with non-NULL ratings

SELECT sum(rating) FROM sailors; // sum of non-NULL ratings

SELECT avg(rating) FROM sailors; // avg of non-NULL ratings

Slide Deck Title

NULLs: Summary
• NULL op x; x op NULL is NULL

• WHERE NULL: do not send to output

• Boolean connectives: 3-valued logic

• Aggregates ignore NULL-valued inputs

SQL
• Basic Single-Table DML queries

• SELECT (with DISTINCT)/FROM/WHERE

• Aggregation: GROUP BY, HAVING

• Presentation: ORDER BY, LIMIT

• Extending basic SELECT/FROM/WHERE

• Multi-table queries: JOINs

• Aliasing in FROM and SELECT

• Expressions in SELECT

• Expressions, string comparisons, connectives in WHERE

• Extended JOINs

• The use of NULLS

• Query Composition
• Set-oriented operations
• Nested queries
• Views
• Common table expressions

Slide Deck Title

Let’s talk about Sets and Bags
• Set = no duplicates {🍎 ,🍏 ,🍊 ,🍋 ,🍐}

• Bag / Multi-set = duplicates allowed {🍎 ,🍎 , 🍏 ,🍊 ,🍊 ,🍊}

• As we saw earlier SQL uses bag semantics

• That is, there can be multiple copies of each tuple in a relation

• How do we “add/subtract” tuples across relations?

• We can do so operators that enforce either bag or set-based
semantics

Slide Deck Title

Operators with Set Semantics
• Set: a collection of distinct elements

• In the relational parlance: each tuple/row is unique

• Ways of manipulating/combining sets

• A UNION B: distinct tuples in A or B

• A INTERSECT B: distinct tuples in A and B

• A EXCEPT B: distinct tuples in A but not in B

• Basically, we treat tuples within a relation as elements of a set

Slide Deck Title

Using Set Semantics with SQL

R = {A, A, A, A, B, B, C, D} 
S = {A, A, B, B, B, C, E}

• UNION 
	 {A, B, C, D, E}

• INTERSECT 
	 {A, B, C}

• EXCEPT 
	 {D}

Note: R and S are relations. They are not sets, since they have duplicates.

Assume these are all tuples: A, B, C, D, E

sid bid day

1 102 9/12

1 102 9/12

2 101 10/01

Reserves

Q: What does

(SELECT * FROM Reserves)

UNION

(SELECT * FROM Reserves)

give us?

Slide Deck Title

“ALL”: Multiset Semantics
R = {A, A, A, A, B, B, C, D} = {A(4), B(2), C(1), D(1)}  
S = {A, A, B, B, B, C, E} = {A(2), B(3), C(1), E(1)}

Slide Deck Title

“UNION ALL”: Multiset Semantics
R = {A, A, A, A, B, B, C, D} = {A(4), B(2), C(1), D(1)}  
S = {A, A, B, B, B, C, E} = {A(2), B(3), C(1), E(1)}

•UNION ALL: sum of cardinalities

{A(4+2), B(2+3), C(1+1), D(1+0), E(0+1)}  
= {A, A, A, A, A, A, B, B, B, B, B, C, C, D, E}

sid bid day

1 102 9/12

1 102 9/12

2 101 10/01

Q: What does

(SELECT * FROM Reserves)

UNION ALL

(SELECT * FROM Reserves)

give us?

Reserves

Slide Deck Title

“INTERSECT ALL”: Multiset Semantics
R = {A, A, A, A, B, B, C, D} = {A(4), B(2), C(1), D(1)}  
S = {A, A, B, B, B, C, E} = {A(2), B(3), C(1), E(1)}

•INTERSECT ALL: min of cardinalities

{A(min(4,2)), B(min(2,3)), C(min(1,1)),  
D(min(1,0)), E(min(0,1))} 
= {A, A, B, B, C}

Slide Deck Title

“EXCEPT ALL”: Multiset Semantics
R = {A, A, A, A, B, B, C, D} = {A(4), B(2), C(1), D(1)}  
S = {A, A, B, B, B, C, E} = {A(2), B(3), C(1), E(1)}

•EXCEPT ALL: difference of cardinalities

{A(4-2), B(2-3), C(1-1), D(1-0), E(0-1)}  
= {A, A, D}

Slide Deck Title

Set/Bag Operators
• A UNION B, A INTERSECT B, A EXCEPT B perform set-

based operations treating tuples in A and B as sets

• A UNION ALL B, A INTERSECT ALL B, A EXCEPT ALL B
perform bag-based operations treating tuples in A and B as
bags

• Note: for these operations to be applied correctly, the schema
for A and B must be the same!

Slide Deck Title

Combining Predicates
• Subtle connections between:

– Boolean logic in WHERE (i.e., AND, OR)

– Set operations (i.e. INTERSECT, UNION)

• Let’s see some examples…

Slide Deck Title

Sid’s of sailors who reserved a red OR a green boat

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color='red'

UNION

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color='green'

VS…

SELECT DISTINCT R.sid
FROM Boats B,Reserves R
WHERE R.bid=B.bid AND

(B.color='red’ OR B.color='green')

These two give the exact same result!

HW:

a) What if we did UNION ALL instead?

b) What if we omitted DISTINCT?

Slide Deck Title

Sid’s of sailors who reserved a red AND a green boat

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color='red'

INTERSECT

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color='green'

VS…

SELECT DISTINCT R.sid
FROM Boats B,Reserves R
WHERE R.bid=B.bid AND

(B.color='red’ AND B.color=‘green')

The first query works fine… but the
second query doesn’t work. Why?

SQL
• Basic Single-Table DML queries

• SELECT (with DISTINCT)/FROM/WHERE

• Aggregation: GROUP BY, HAVING

• Presentation: ORDER BY, LIMIT

• Extending basic SELECT/FROM/WHERE

• Multi-table queries: JOINs

• Aliasing in FROM and SELECT

• Expressions in SELECT

• Expressions, string comparisons, connectives in WHERE

• Extended JOINs

• The use of NULLS

• Query Composition

• Set-oriented operations

• Nested queries
• Views

• Common table expressions

Slide Deck Title

Query Composition
• We’ve already seen one way of combining results across

multiple queries via set and bag-based operations

• Now, we’ll talk about “nesting” queries inside other queries

• Nesting and subqueries

• Views to refer to frequent query expressions

• Common Table Expressions

Slide Deck Title

Nested Queries: IN
• Names of sailors who’ve reserved boat #102:

SELECT S.sname
FROM Sailors S
WHERE S.sid IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid=102)

Here, the results of this subquery are treated as a (multi)set, with
membership of S.sid checked in the set using the IN operator

subquery

Slide Deck Title

Nested Queries: NOT IN
• Names of sailors who’ve not reserved boat #103:

SELECT S.sname
FROM Sailors S
WHERE S.sid NOT IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid=103)

Slide Deck Title

Nested Queries with Correlation
• So far, we’ve studied ways to nest query results and treat it as a “set” with membership in the

set checked

• using … val [NOT] IN (nested query)

• We can also check if a nested query result is empty/not

• using … [NOT] EXISTS (nested query)

• Names of sailors who’ve reserved boat #102:

SELECT S.sname
FROM Sailors S
WHERE EXISTS

(SELECT *
FROM Reserves R
WHERE R.bid=102 AND S.sid=R.sid)

• Correlated subquery is conceptually recomputed for each Sailors tuple.

Slide Deck Title

More on Set-Comparison Operators
• We’ve seen: [NOT] IN, [NOT] EXISTS

• Other forms: op ANY, op ALL

Find sailors whose rating is greater than that of some sailor called Popeye:

SELECT *
FROM Sailors S
WHERE S.rating > ANY

(SELECT S2.rating
FROM Sailors S2
WHERE S2.sname=‘Popeye')

SQLite note: ANY/ALL not supported.

Slide Deck Title

A Tough One: “Division”
• Relational Division: “Find sailors who’ve reserved all boats.” 

Said differently: “Sailors with no missing boats”

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS

(SELECT B.bid
FROM Boats B
WHERE NOT EXISTS (SELECT R.bid

FROM Reserves R
WHERE R.bid=B.bid
AND R.sid=S.sid))

For S, this is the set of all boats
they have not reserved

For S and B, this is the set
of reservations of B for S

Slide Deck Title

ARGMAX?
• The sailor with the highest rating

• Correct or Incorrect? Same or different?

SELECT *
FROM Sailors S
WHERE S.rating >= ALL
(SELECT S2.rating
FROM Sailors S2)

VS

SELECT *
FROM Sailors S
WHERE S.rating =
(SELECT MAX(S2.rating)
FROM Sailors S2)

These are exactly the same!

Slide Deck Title

ARGMAX?
• The sailor with the highest rating

• Correct or Incorrect? Same or different?

SELECT *
FROM Sailors S
WHERE S.rating >= ALL
(SELECT S2.rating
FROM Sailors S2)

VS
SELECT *
FROM Sailors S
ORDER BY rating DESC
LIMIT 1;

These are not the same if there are multiple such Sailors

Slide Deck Title

Views: Named Queries
CREATE VIEW view_name AS select_statement

• Makes development simpler, convenient

• Often used for security

• Not “materialized” [but there are materialized views as well!]

// Counts of reservations for red colored boats

CREATE VIEW Redcount AS

SELECT B.bid, COUNT(*) AS scount
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color=‘red’
GROUP BY B.bid

Slide Deck Title

Views Instead of Relations in Queries
CREATE VIEW Redcount AS
SELECT B.bid, COUNT(*) AS scount
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color=‘red’
GROUP BY B.bid;

SELECT * from Redcount WHERE scount<10;

Slide Deck Title

Subqueries in FROM
Like a “view on the fly”!

SELECT *
FROM
(SELECT B.bid, COUNT (*)
FROM Boats B, Reserves R
WHERE R.bid = B.bid AND B.color = ‘red’
GROUP BY B.bid) AS Redcount(bid, scount)
WHERE scount < 10

Slide Deck Title

WITH a.k.a. common table expression (CTE)

Another “view on the fly” syntax:
WITH Redcount(bid, scount) AS
(SELECT B.bid, COUNT (*)
FROM Boats B, Reserves R
WHERE R.bid = B.bid AND B.color = 'red'
GROUP BY B.bid)

SELECT * FROM Reds
WHERE scount < 10

Slide Deck Title

Can have many queries in WITH
Cascade of queries: Redcount -> UnpopularReds

WITH Redcount(bid, scount) AS
(SELECT B.bid, COUNT (*)
FROM Boats B, Reserves R
WHERE R.bid = B.bid AND B.color = 'red'
GROUP BY B.bid),
UnpopularReds AS
(SELECT *
FROM Redcount
WHERE scount < 10)

SELECT * FROM UnpopularReds;

Slide Deck Title

ARGMAX GROUP BY?
• More complex variation of previous argmax

• Find the sailors with the highest rating per age

WITH maxratings(age, maxrating) AS
(SELECT age, max(rating)
FROM Sailors
GROUP BY age)

SELECT S.*
 FROM Sailors S, maxratings m
 WHERE S.age = m.age
 AND S.rating = m.maxrating;

Slide Deck Title

Testing SQL Queries
• Typically not every database instance will reveal every bug in

your query.

• Eg: database instance without any rows in it!

• Best to try to reason about behavior across all instances

• Also helpful: constructing test data.

Slide Deck Title

Tips for Generating Test Data
• Generate random data

• e.g. using a service like mockaroo.com

• Try to construct data that could check for the following potential errors:

• Incorrect output schema

• Output may be missing rows from the correct answer (false negatives)

• Output may contain incorrect rows (false positives)

• Output may have the wrong number of duplicates.

• Output may not be ordered properly.

Slide Deck Title

Summary
• You’ve now seen SQL—you are armed.

• A declarative language

• Somebody has to translate to algorithms though…

• The RDBMS implementor ... i.e. you!

Slide Deck Title

Summary Cont

• The data structures and algorithms that make SQL possible also power:

• NoSQL, data mining, scalable ML, network routing…

• A toolbox for scalable computing!

• Start talking about that in the next set of slides!

• We skirted questions of good database (schema) design

• a topic we’ll consider in greater depth later

