
File Organization
Cost Models
Intro to indexes

Alvin Cheung
Aditya Parameswaran
Reading: R & G Chapter 9



Slide Deck Title

Architecture of a DBMS
Completed

And We’ll Visit

You are Here

Database 
Management

System

File System

Query Parsing
& Optimization

Relational Operators

Files and Index Management

Buffer Management

Disk Space Management

SQL Client



Slide Deck Title

Recall: Heap Files

• Unordered collection of records

• Recall API for higher layers of the DBMS: only READ and WRITE!

• Today we’ll ask: “How? At what cost?”
• Insert/delete/modify record
• Fetch a particular record by record id …

• Record id is a pointer encoding pair of (pageID, location within page)
• Scan all records 

• Possibly with some conditions on the records to be retrieved



Slide Deck Title

Recall: Multiple File Organizations
• Many alternatives exist, each good in some situations and 

less so in others.
• This is a theme in DB systems work!

• Heap Files: Suitable when typical access is a full scan of all records
• Sorted Files: Best for retrieval in order, or when a range of records is needed
• Clustered Files & Indexes: Group data into blocks to enable fast lookup and

efficient modifications. 
• More on this soon …

• Want a way to quantitatively compare the cost of accessing data
• Goal: given a query workload, find the best way to store data for optimal performance



Slide Deck Title

Cost Model Overview 
• We want “big picture” estimates for data access

• We’ll (overly) simplify performance models to provide insight, not to get perfect 
performance

• Still, a bit of discipline:
• Clearly identify assumptions up front
• Then estimate cost in a principled way

• Foundation for query optimization
• Can’t choose the fastest scheme without a speed estimate!



Slide Deck Title

Cost Model for Analysis
• B: Number of data blocks in the file
• R: Number of records per block
• D: (Average) time to read/write disk block

• Focus: Average case analysis for uniform random workloads

• Assumptions: For now, we will ignore
• Sequential vs Random I/O
• Pre-fetching and cache eviction costs
• Any CPU costs after fetching data into memory
• Reading/writing of header pages for heap files

• Will assume data need to be brought into memory before operated on (and potentially 
written back to disk afterwards)
• Both will cost I/O!

• Good enough to show the overall trends

Block 1 Block 2 … Block B

Record 1

Record 2
…

Record R



Slide Deck Title

More Assumptions
• Single record insert and delete

• Equality selection – exactly one match

• For Heap Files:
• Insert always appends to end of file.

• For Sorted Files:
• Packed: Files compacted after deletions (i.e., no holes)
• Sorted according to search key



Slide Deck Title

Extra Challenge
• After understanding these slides …

• You should question all these assumptions and rework
• Good exercise to study for tests, and generate ideas



Slide Deck Title

Heap Files & Sorted Files

2, 5 1, 6 4, 7 3, 10 8, 9

Heap File

1, 2 3, 4 5, 6 7, 8 9, 10

For illustration, records are just integers

Sorted File

• B: Number of data blocks = 5
• R: Number of records per block = 2
• D: (Average) time to read/write disk block = 5ms



Slide Deck Title

Cost of Operations: Scan?

• B: Number of data blocks = 5
• R: Number of records per block = 2
• D: (Average) time to read/write disk block = 5ms

Heap File Sorted File

Scan all records

Equality Search

Range Search

Insert

Delete



Slide Deck Title

Scan All Records

• B: Number of data blocks
• R: Number of records per block
• D: Average time to read/write disk block
• Pages touched: ?
• Time to read the record: ?

2, 5 1, 6 4, 7 3, 10 8, 9

Heap File

1, 2 3, 4 5, 6 7, 8 9, 10

Sorted File



Slide Deck Title

Cost of Operations: Scan Cost
Heap File Sorted File

Scan all records B*D B*D

Equality Search

Range Search

Insert

Delete

• B: Number of data blocks
• R: Number of records per block
• D: Average time to read/write disk block



Slide Deck Title

Cost of Operations: Equality Search?

• B: Number of data blocks
• R: Number of records per block
• D: Average time to read/write disk block

Heap File Sorted File

Scan all records B*D B*D

Equality Search

Range Search

Insert

Delete



Slide Deck Title

Find Record 8: Heap File

• P(i): Probability that key is on page i is 1/B
• T(i): Number of pages touched if key on page i is i
• Therefore the expected number of pages touched is:

Heap File

2, 5 1, 6 4, 7 3, 10 8, 9

BX

i=1

T(i)P(i) =
BX

i=1

i
1

B
=

B(B + 1)

2B
⇡ B

2



Slide Deck Title

Find Record 8: Sorted File

• Worst-case: Pages touched in binary search
• log2B

• Average-case: Pages touched in binary search
• log2B?

Sorted File

1, 2 3, 4 5, 6 7, 8 9, 10



Slide Deck Title

Average Case Binary Search
B: The number of data blocks
Expected Number of Reads: 1 (1 / B) + 2 (2 / B) + 3 (4 / B) + 4 (8 / B)



Slide Deck Title

Average Case Binary Search cont
Expected Number of Reads: 1 (1 / B) + 2 (2 / B) + 3 (4 / B) + 4 (8 / B)

1 IO

2 IOs

3 IOs

4 IOs

log2 BX

i=1

i
2i�1

B
=

1

B

log2 BX

i=1

i2i�1 = log2 B � B � 1

B



Slide Deck Title

Cost of Operations: Equation Search Cost
Heap File Sorted File

Scan all records B*D B*D

Equality Search 0.5*B*D (log2B)*D

Range Search

Insert

Delete

• B: Number of data blocks
• R: Number of records per block
• D: Average time to read/write disk block



Slide Deck Title

Cost of Operations: Range Search?
Heap File Sorted File

Scan all records B*D B*D

Equality Search 0.5*B*D (log2B)*D

Range Search

Insert

Delete

• B: Number of data blocks
• R: Number of records per block
• D: Average time to read/write disk block



Slide Deck Title

Find Records Between 7 and 9: Heap File

• Always touch all blocks. Why?
Heap File

2, 5 1, 6 4, 7 3, 10 8, 9



Slide Deck Title

Find Records Between 7 and 9: Comparison

• Find beginning of range
• Scan right

Heap File

2, 5 1, 6 4, 7 3, 10 8, 9

Sorted File

1, 2 3, 4 5, 6 7, 8 9, 10



Slide Deck Title

Cost of Operations: Range Search Cost
Heap File Sorted File

Scan all records B*D B*D

Equality Search 0.5*B*D (log2B)*D

Range Search B*D ((log2B)+pages)*
D

Insert

Delete

• B: Number of data blocks
• R: Number of records per block
• D: Average time to read/write disk block



Slide Deck Title

Cost of Operations: Insert?
Heap File Sorted File

Scan all records B*D B*D

Equality Search 0.5*B*D (log2B)*D

Range Search B*D ((log2B)+pages)*
D

Insert

Delete

• B: Number of data blocks
• R: Number of records per block
• D: Average time to read/write disk block



Slide Deck Title

Insert 4.5: Heap File

• Stick at end of file
• Cost = 2*D
• Why 2?

Heap File

2, 5 1, 6 4, 7 3, 10 8, 9 4.5,_



Slide Deck Title

Insert 4.5: Heap Vs Sorted File

• Read last page, append, write. Total cost = 2*D

• Find location for record. Cost = (log2B) * D

Heap File

2, 5 1, 6 4, 7 3, 10 8, 9 4.5,

Sorted File

1, 2 3, 4 5, 6 7, 8 9, _



Slide Deck Title

Insert 4.5: Heap Vs Sorted Pt 2

• Read last page, append, write. Total cost = 2*D

• Find location for record. Cost = (log2B) * D
• Insert and shift rest of file. Cost = (B/2) * D * 2 = B * D
• Total: find cost + insert and shift cost = (log2B) * D + B * D = ((log2B) + B) * D

1, 2 3, 4 5, 6 7, 8 9, 10

2, 5 1, 6 4, 7 3, 10 8, 9 4.5,

10, _

Sorted File

4.5, 5 6, 7 8, 9

Heap File



Slide Deck Title

Cost of Operations: Insert Cost
Heap File Sorted File

Scan all records B*D B*D

Equality Search 0.5*B*D (log2B)*D

Range Search B*D ((log2B)+pages)*
D

Insert 2*D ((log2B)+B)*D

Delete

• B: Number of data blocks
• R: Number of records per block
• D: Average time to read/write disk block



Slide Deck Title

Cost of Operations: Delete?
Heap File Sorted File

Scan all records B*D B*D

Equality Search 0.5*B*D (log2B)*D

Range Search B*D ((log2B)+pages)*
D

Insert 2*D ((log2B)+B)*D

Delete

• B: Number of data blocks
• R: Number of records per block
• D: Average time to read/write disk block



Slide Deck Title

Delete 4.5: Heap File

• Average case to find the record:  B/2 reads
• Delete record from page
• Cost = (B/2 + 1) * D

• Why + 1?

Heap File

2, 5 1, 6 4, 7 3, 10 8, 9 4.5,



Slide Deck Title

Delete 4.5: Heap File Vs Sorted File

• Average case runtime:  (B/2+1) * D

• Find location for record. Cost = log2B
• Delete record in page à Gap

Heap File

2, 5 1, 6 4, 7 3, 10 8, 9

Sorted File

1, 2 3, 4 4.5, 5 6, 7 8, 9 10, __



Slide Deck Title

Delete 4.5: Heap File Vs Sorted File Pt 2

• Average case runtime:  (B/2+1) * D

• Find location for record. Cost = log2B
• Read the rest into memory, shift by 1 record, and write back:  2 * (B/2) = B
• Total: find cost + delete and shift cost = (log2B) * D + B * D = ((log2B) + B) * D

Heap File

2, 5 1, 6 4, 7 3, 10 8, 9

Sorted File

1, 2 3, 4 __, 5 6, 7 8, 9 10, _7, 8 9, 10



Slide Deck Title

Complete Cost of Operations
Heap File Sorted File

Scan all records B*D B*D

Equality Search 0.5*B*D (log2B)*D

Range Search B*D ((log2B)+pages)*
D

Insert 2*D ((log2B)+B)*D

Delete (0.5*B+1)*D ((log2B)+B)*D

• B: Number of data blocks
• R: Number of records per block
• D: Average time to read/write disk block



Slide Deck Title

Complete Cost of Operations Pt 2

• B: Number of data blocks
• R: Number of records per block
• D: Average time to read/write disk block
• Can we do better?

• Indexes!

Heap File Sorted File

Scan all records B*D B*D

Equality Search 0.5*B*D (log2B)*D

Range Search B*D ((log2B)+pages)*
D

Insert 2*D ((log2B)+B)*D

Delete (0.5*B+1)*D ((log2B)+B)*D



Slide Deck Title

Wouldn’t it be nice…

• …if we could look things up by value?

• But … efficiency?

“If you don't find it in the index, look very carefully through the entire catalog. ”
—Sears, Roebuck, and Co., Consumers' Guide, 1897 



Slide Deck Title

We’ve seen this before
• Data structures … in memory:

• Search trees (Binary, AVL, Red-Black, …)
• Hash tables
• Recall cs61b!

• But we need disk-based data structures
• “paginated”: made up of disk pages!



Slide Deck Title

We’ve seen this before
CREATE TABLE Sailors (

sid INTEGER,   
sname CHAR(20), 
rating INTEGER, 
age FLOAT,
PRIMARY KEY (sid));

sid sname rating age
1 Fred 7 22
2 Jim 2 39
3 Nancy 8 27

• How to store data in Sailors?
• Use an index!



Slide Deck Title

Index
An index is data structure that enables fast lookup and modification of 
data entries by search key

• Lookup: may support many different operations
• Equality, 1-d range, 2-d region, …

• Search Key: any subset of columns in the relation
• Do not need to be unique

• e.g., (firstname) or (firstname, lastname)



Slide Deck Title

Index Part 2
An index is data structure that enables fast lookup and modification of 
data entries by search key

• Data Entries: items stored in the index
• Assume for today: a pair (k, recordId) …

• Pointers to records in Heap Files!
• Easy to generalize later

• Modification: want to support fast insert and delete
Many Types of indexes exist: B+-Tree, Hash, R-Tree, GiST, ...


