Tree Indexes

Alvin Cheung

Aditya Parameswaran
Reading: R \& G Chapter 10

Simple Idea?

- Step 1: Sort heap file \& leave some space
- Pages physically stored in logical order (sequential access)
- Maintenance as new records are added/deleted is a pain, can lead to B updates in the worst case (move everything down or up)

- Step 2: Use binary search on this sorted heap file: log_2(B) pages read
- Fan-out of $2 \rightarrow$ deep tree \rightarrow lots of I/Os
- Examine entire records just to read key during search: would prefer $\log _{2} 2(K)$ where K is number of pages to store keys $\ll B$

Let's fix these assumptions

- Idea: Keep separate (compact) key lookup pages, laid out sequentially
- Maintaining key \rightarrow recordID mapping [We'll revisit this later]
- No need to sort heap file anymore! Just sort key lookup pages
- Can use binary search on these lookup pages as opposed to on all of the data pages
- Still have a deep tree due to fan-out of $2 \rightarrow$ lots of I/Os
- Also, maintenance of the key lookup pages is a pain! Worst case K updates

Let's fix these assumptions, take 2

- Idea: repeat the process!
- Lookup pages for the lookup pages
- And then lookup pages for the lookup pages for the lookup pages,
- And while we're at it, we can fix the fanout to be >> 2
- That is essentially the idea behind B+ Trees ...
- We'll find out why the pointers are helpful later

Enter the B+ Tree, More Formally

- Dynamic Tree Index
- Always Balanced
- High fanout
- Support efficient insertion \& deletion
- Grows at root not leaves!
- "+"? B-tree that stores data entries in leaves only
- Helps with range search

B+ Trees: How to Read an Interior Node

- Node[..., ($\left.\mathrm{K}_{\mathrm{L}}, \mathrm{P}_{\mathrm{L}}, \ldots\right] \rightarrow \rightarrow \begin{gathered}\text { Values \& } \\ \text { Pointers }\end{gathered}$ $\mathrm{K}_{\mathrm{L}}<=\mathrm{K}$ for all K in P_{L} Sub-tree

Example of a B+ Tree

- Property 1: Nodes in a B+ tree must obey an occupancy invariant
- This allows us to guarantee that lookup costs are bounded
- Invariant: each interior node is full beyond a certain minimum: in this case [and typically], at least half full
- This minimum, d, is called the order of the tree
- Here, max \# of entries $=4$. Thus $d=2$.
- Guarantee: d <= \# entries <= 2d. In this tree, 2 <= \# entries <= 4
- Root doesn't need to obey this invariant
- \quad Same invariant holds for leaf nodes: at least half full (d may differ, here it is the same)

Example of a B+ Tree

- Property 1: Nodes in a B+ tree must obey an occupancy invariant
- Each interior/leaf node is full beyond a certain minimum d
- Property 2: Leaf pages at bottom need not be stored in sequence in logical order
- Next and prev. pointers help examining them in sequence [useful as we will see soon]

B+ Trees and Scale

- How many records can this height $1 \mathrm{~B}+$ tree index?
- Max entries = 4; Fan-out (\# of pointers) $=5$
- Height 1: 5 (pointers from root) x 4 (slots in leaves) $=20$ Records

B+ Trees and Scale Part 2

- How many records can this height $3 \mathrm{~B}+$ tree index?
- Fan-out =5; Max entries = 4
- Height 3: 5 (root) $\times 5$ (level 2) $\times 5$ (level 3) $\times 4$ (leaves) $=5^{3} \times 4=500$ Records

Extending this: B+ Trees in Practice

(Warning: Sloppy back-of-the-envelope calculation!)
Say 128KB pages, with around 40B per (val, ptr) pair

- Max entries = roughly $128 \mathrm{~KB} / 40 \mathrm{~B}=$ approx. 3000
- Max fanout = 3000+1 = approx. 3000
- Say $2 / 3$ are filled on average

At these capacities

- Height 1: 2000 (pointers from root) $\times 2000$ (entries per leaf) $=2000^{2}=4,000,000$
- Height 2: 2000 (pointers from root) x 2000 (pointers from level 2) x 2000 (entries per leaf) $=2000^{3}=8,000,000,000$
Core takeaway: Even depths of 3 allow us to index a massive \# of records!

Searching the B+ Tree

- Procedure:
- Find split on each node (Binary Search)
- Follow pointer to next node

Searching the B+ Tree: Find 27

- Find key = 27
- Find split on each node (Binary Search)
- Follow pointer to next node

Searching the B+ Tree: Fetch Data

(27, Jo
(34, Kit)

Searching the B+ Tree: Find 27 and up

- Find keys >=27
- Find 27 first, then traverse leaves following pointers
- This is an example of a range scan: value in [a, b]
- Benefit: no need to go back up the tree! Saves I/Os

Inserting 26* into a B+ Tree Part 1

Inserting 26* into a B+ Tree Part 2

- Find the correct leaf

If there is room in the leaf just add the entry

Inserting 26* into a B+ Tree Part 3

- Find the correct leaf

If there is room in the leaf just add the entry

- Sort the leaf page by key

Inserting 8* into a B+ Tree: Find Leaf

- Find the correct leaf

Inserting 8* into a B+ Tree: Insert

- Find the correct leaf
- Split leaf if there is not enough room

Inserting 8* into a B+ Tree: Split Leaf

- Find the correct leaf
- Split leaf if there is not enough room
- Redistribute entries evenly

Inserting 8* into a B+ Tree: Split Leaf, cont

- Find the correct leaf
- Split leaf if there is not enough room
- Redistribute entries evenly
- Fix next/prev pointers

Inserting 8* into a B+ Tree: Fix Pointers

- Find the correct leaf
- Split leaf if there is not enough room
- Redistribute entries evenly
- Fix next/prev pointers

Inserting 8* into a B+ Tree: Mid-Flight

Something is still wrong!

Inserting 8* into a B+ Tree: Copy Middle Key

- Copy up from leaf the middle key and pointer to the orphan leaf
- This is what we need to access it

Inserting 8* into a B+ Tree: Split Parent, Part 1

Copy up from leaf the middle key and pointer to the orphan leaf
No room in parent? (Parent now has 2d+1 instead of 2d)

- Recursively split index nodes
- Redistribute the rightmost $d+1$ keys

Inserting 8* into a B+ Tree: Split Parent, Part 2

Copy up from leaf the middle key and pointer to the orphan leaf
No room in parent? Recursively split index nodes

- Redistribute the rightmost d+1 keys
- Not enough: we now have two roots!

Inserting 8* into a B+ Tree: Root Grows Up

- No room in parent? Recursively split index nodes

- Redistribute the rightmost d+1 keys
- To fix, create a new root:
- Push up from interior node the middle key (and assoc. pointer)

Inserting 8* into a B+ Tree: Root Grows Up, Pt 2

- Net effect
- d keys on the left and right => invariant satisfied!
- middle key pushed up
- Consolidate 5^{\star} into left node

Inserting 8* into a B+ Tree: Root Grows Up, Pt 3

- Net effect
- d keys on the left and right
- middle key pushed up
- Here, we ended up creating a new root and increasing depth => rare

Copy up vs Push up!

The leaf entry (5) was copied up
We can't lose the original key: all keys must be in leaves
The index entry (17) was pushed up
We don't need it any more for routing => convince yourself!

B+ Tree Insert: Algorithm Sketch

1. Find the correct leaf L .
2. Put data entry onto L.

- If L has enough space, done!
- Else, must split L (into L and a new node L2)
- Redistribute entries evenly, copy up middle key (and ptr to L2)
- Insert index entry pointing to L2 into parent of L.

B+ Tree Insert: Algorithm Sketch Part 2

- Step 2 can happen recursively
- To split index node, redistribute entries evenly, but push up middle key (and ptr to new index node). (Contrast with leaf splits)
- Splits "grow" tree
- Tree growth: gets wider if possible from bottom up
- Worst case, adds another level with a new root
- Ensures balance \& therefore the logarithmic guarantee

We will skip deletion

- In practice, occupancy invariant often not enforced during deletion
- Just delete leaf entries and leave space
- If new inserts come, great
- This is common
- If page becomes completely empty, can delete
- Parent may become underfull
- That's OK too
- Guarantees still attractive: $\log _{\mathrm{F}}$ (total number of inserts)
- Textbook describes algorithm for rebalancing and merging on deletes

BULK LOADING B+-TREES

Bulk Loading of B+ Tree Part 1

- Suppose we want to build an index on a large table from scratch
- Would it be efficient to just call insert repeatedly
- Q: No ... Why not?

Bulk Loading of B+ Tree Part 2

- Constantly need to search from root
- Modifying random pages: poor cache efficiency
- Leaves poorly utilized (typically half-empty)

Smarter Bulk Loading a B+ Tree

Sort the input records by key:

- $1^{*}, 2^{*}, 3^{*}, 4^{*}, \ldots$
- We'll learn a good disk-based sort algorithm soon!

Fill leaf pages to some fill factor (e.g. $3 / 4$)

- Updating parent until full

Smarter Bulk Loading a B+ Tree Part 2

Sort the input records by key:

- $1^{*}, 2^{*}, 3^{*}, 4^{*}, \ldots$

Fill leaf pages to some fill factor (e.g. $3 / 4$)

- Update parent until full
- Then create new sibling and copy over half: same as in index node splits for insertion

Smarter Bulk Loading a B+ Tree Part 3

Lower left part of the tree is never touched again
Occupancy invariant maintained:

- leaves filled beyond d, rest of the nodes via insertion split procedure

Smarter Bulk Loading a B+ Tree Part 4

Benefits: Better

- Cache utilization than insertion into random locations
- Utilization of leaf nodes (and therefore shallower tree)
- Layout of leaf pages (more sequential)

Summary

- B+ Tree is a powerful dynamic indexing structure
- Inserts/deletes leave tree height-balanced; $\log _{F} N$ cost
- High fanout (F) means height rarely more than 3 or 4.
- Higher levels stay in cache, avoiding expensive disk I/O
- Almost always better than maintaining a sorted file.
- Widely used in DBMSs!
- Bulk loading can be much faster than repeated inserts for creating a B+ tree on a large data set.

