
Tree Indexes

Alvin Cheung
Aditya Parameswaran

Reading: R & G Chapter 10

Simple Idea?
• Step 1: Sort heap file & leave some space

• Pages physically stored in logical order (sequential access)
• Maintenance as new records are added/deleted is a pain, can lead

to B updates in the worst case (move everything down or up)

• Step 2: Use binary search on this sorted heap file: log_2(B) pages read
• Fan-out of 2 à deep tree à lots of I/Os
• Examine entire records just to read key during search: would

prefer log_2(K) where K is number of pages to store keys << B

1, 2, _ 3, 4, _ 5, 6, _ 7, 8, _ 9, 10, _

3, 4, 5 1, 2, 7 8, 6, 9 10, _, _Input
Heap

File

Let’s fix these assumptions
• Idea: Keep separate (compact) key lookup pages, laid out sequentially

• Maintaining key è recordID mapping [We’ll revisit this later]
• No need to sort heap file anymore! Just sort key lookup pages
• Can use binary search on these lookup pages as opposed to on all of the data pages

• Still have a deep tree due to fan-out of 2 à lots of I/Os
• Also, maintenance of the key lookup pages is a pain! Worst case K updates

2* 3* 5* 7* 8* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*27*

(20, Tim) (7, Dan) (5, Kay) (3, Jim) (27, Joe) (34, Kit) (1, Kim) (42, Hal)

Page 1 Page 2 Page 3 Page 4

Pa
ge

Id,
Slo

tId

Let’s fix these assumptions, take 2
• Idea: repeat the process!
• Lookup pages for the lookup

pages
• And then lookup pages for

the lookup pages for the
lookup pages, ….

• And while we’re at it, we can
fix the fanout to be >> 2

• That is essentially the idea
behind B+ Trees …

• We’ll find out why the
pointers are helpful later

17

5 13 24 30

2* 3* 5* 7* 8* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

Page 1

Page 4 Page 6

(20, Tim) (7, Dan) (5, Kay) (3, Jim) (27, Joe) (34, Kit) (1, Kim) (42, Hal)

Page 1 Page 2 Page 3 Page 4

Pa
ge

Id,
Slo

tId

Enter the B+ Tree, More Formally

• Dynamic Tree Index
• Always Balanced
• High fanout
• Support efficient insertion & deletion

• Grows at root not leaves!

• “+”? B-tree that stores data entries in leaves only

• Helps with range search

0

B+ Trees: How to Read an Interior Node

• Node[…, (KL, PL), …] è
KL<= K for all K in PL
Sub-tree

5 13

2* 3* 5* 7* 8* 14* 16*

Values v:
5<=v<13

Values &
Pointers

Example of a B+ Tree

• Property 1: Nodes in a B+ tree must obey an occupancy invariant
• This allows us to guarantee that lookup costs are bounded
• Invariant: each interior node is full beyond a certain minimum: in this case [and typically], at least half full

• This minimum, d, is called the order of the tree
• Here, max # of entries = 4. Thus d = 2.
• Guarantee: d <= # entries <= 2d. In this tree, 2 <= # entries <= 4

• Root doesn’t need to obey this invariant
• Same invariant holds for leaf nodes: at least half full (d may differ, here it is the same)

17

5 13 24 30

2* 3* 5* 7* 8* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

Root Node
Page 1

Page 4 Page 6

Page 2 Page 3 Page 5 Page 7 Page 8 Page 9

Values v:
24<=v<30

Key -> Pointer
to recordLeaf Node

Example of a B+ Tree

• Property 1: Nodes in a B+ tree must obey an occupancy invariant
• Each interior/leaf node is full beyond a certain minimum d

• Property 2: Leaf pages at bottom need not be stored in sequence in logical order
• Next and prev. pointers help examining them in sequence [useful as we will see soon]

17

5 13 24 30

2* 3* 5* 7* 8* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

Root Node
Page 1

Page 4 Page 6

Page 2 Page 3 Page 5 Page 7 Page 8 Page 9

Values v:
24<=v<30

Key -> Pointer
to recordLeaf Node

B+ Trees and Scale

• How many records can this height 1 B+ tree index?
• Max entries = 4; Fan-out (# of pointers) = 5
• Height 1: 5 (pointers from root) x 4 (slots in leaves) = 20 Records

Root Node
Key -> Pointer

to record

B+ Trees and Scale Part 2
Root Node

• How many records can this height 3 B+ tree index?
• Fan-out = 5; Max entries = 4
• Height 3: 5 (root) x 5 (level 2) x 5 (level 3) x 4 (leaves) = 53 x 4 = 500 Records

Level 2

Level 3

• (Warning: Sloppy back-of-the-envelope calculation!)
• Say 128KB pages, with around 40B per (val, ptr) pair

• Max entries = roughly 128KB/40B = approx. 3000
• Max fanout = 3000+1 = approx. 3000
• Say 2/3 are filled on average

• Average fan-out/entries = approx. 2000

• At these capacities
• Height 1: 2000 (pointers from root) x 2000 (entries per leaf) = 20002 = 4,000,000
• Height 2: 2000 (pointers from root) x 2000 (pointers from level 2) x 2000 (entries

per leaf) = 20003 = 8,000,000,000
• Core takeaway: Even depths of 3 allow us to index a massive # of records!

Extending this: B+ Trees in Practice

2000

2000

2000

2000

2000

Searching the B+ Tree
17

5 13 24 30

2* 3* 5* 7* 8* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

Root Node
Page 1

Page 4 Page 6

Page 2 Page 3 Page 5 Page 7 Page 8 Page 9

• Procedure:
• Find split on each node (Binary Search)
• Follow pointer to next node

Searching the B+ Tree: Find 27
17

5 13 24 30

2* 3* 5* 7* 8* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

Root Node
Page 1

Page 4 Page 6

Page 2 Page 3 Page 5 Page 7 Page 8 Page 9

• Find key = 27
• Find split on each node (Binary Search)
• Follow pointer to next node

27*

Searching the B+ Tree: Fetch Data
17

5 13 24 30

2* 3* 5* 7* 8* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

Root Node
Page 1

Page 4 Page 6

Page 2 Page 3 Page 5 Page 7 Page 8 Page 9

27*

(20, Tim) (7, Dan) (5, Kay) (3, Jim) (27, Joe) (34, Kit) (1, Kim) (42, Hal)

Page 1 Page 2 Page 3 Page 4
Pa

ge
Id,

Slo
tId

Searching the B+ Tree: Find 27 and up
17

5 13 24 30

2* 3* 5* 7* 8* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

Root Node
Page 1

Page 4 Page 6

Page 2 Page 3 Page 5 Page 7 Page 8 Page 9

• Find keys >=27
• Find 27 first, then traverse leaves following pointers
• This is an example of a range scan: value in [a, b]
• Benefit: no need to go back up the tree! Saves I/Os

27*

Inserting 26* into a B+ Tree Part 1

13 17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 24* 25* 29* 33* 34* 38* 39*

Root Node

26*

• Find the correct leaf

Inserting 26* into a B+ Tree Part 2

13 17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 24* 25* 29* 26* 33* 34* 38* 39*

Root Node

• Find the correct leaf
• If there is room in the leaf just add the entry

Inserting 26* into a B+ Tree Part 3

13 17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 24* 25* 26* 29* 33* 34* 38* 39*

Root Node

• Find the correct leaf
• If there is room in the leaf just add the entry

• Sort the leaf page by key

Inserting 8* into a B+ Tree: Find Leaf

13 17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 24* 27* 29* 33* 34* 38* 39*

Root Node

8*

• Find the correct leaf

Inserting 8* into a B+ Tree: Insert

13 17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 24* 27* 29* 33* 34* 38* 39*

Root Node

8*

• Find the correct leaf
• Split leaf if there is not enough room

Inserting 8* into a B+ Tree: Split Leaf

• Find the correct leaf
• Split leaf if there is not enough room
• Redistribute entries evenly

13 17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 24* 27* 29* 33* 34* 38* 39*

Root Node

8*

5* 7* 8*

Inserting 8* into a B+ Tree: Split Leaf, cont

13 17 24 30

5* 7* 8*

2* 3* 14* 16* 19* 20* 24* 27* 29* 33* 34* 38* 39*

Root Node

2* 3*

• Find the correct leaf
• Split leaf if there is not enough room
• Redistribute entries evenly
• Fix next/prev pointers

Inserting 8* into a B+ Tree: Fix Pointers

13 17 24 30

14* 16* 19* 20* 24* 27* 29* 33* 34* 38* 39*

Root Node

2* 3* 5* 7* 8*

• Find the correct leaf
• Split leaf if there is not enough room
• Redistribute entries evenly
• Fix next/prev pointers

Inserting 8* into a B+ Tree: Mid-Flight

13 17 24 30

2* 3* 5* 7* 8* 14* 16* 19* 20* 24* 27* 29* 33* 34* 38* 39*

Root Node

• Something is still wrong!

I am an
orphan!

Inserting 8* into a B+ Tree: Copy Middle Key

13 17 24 30

2* 3* 5* 7* 8* 14* 16* 19* 20* 24* 27* 29* 33* 34* 38* 39*

Root Node

• Copy up from leaf the middle key and pointer to the orphan leaf
• This is what we need to access it

5

13

Inserting 8* into a B+ Tree: Split Parent, Part 1

17 24 30

2* 3* 5* 7* 8* 14* 16* 19* 20* 24* 27* 29* 33* 34* 38* 39*

5

• Copy up from leaf the middle key and pointer to the orphan leaf
• No room in parent? (Parent now has 2d+1 instead of 2d)

• Recursively split index nodes
• Redistribute the rightmost d+1 keys

302417

Inserting 8* into a B+ Tree: Split Parent, Part 2

13

2* 3* 5* 7* 8* 14* 16* 19* 20* 24* 27* 29* 33* 34* 38* 39*

• Copy up from leaf the middle key and pointer to the orphan leaf
• No room in parent? Recursively split index nodes

• Redistribute the rightmost d+1 keys
• Not enough: we now have two roots!

5 302417

Inserting 8* into a B+ Tree: Root Grows Up

13

2* 3* 5* 7* 8* 14* 16* 19* 20* 24* 27* 29* 33* 34* 38* 39*

Root Node

• No room in parent? Recursively split index nodes
• Redistribute the rightmost d+1 keys

• To fix, create a new root:
• Push up from interior node the middle key (and assoc. pointer)

5 17 24 30

13

Inserting 8* into a B+ Tree: Root Grows Up, Pt 2

• Net effect
• d keys on the left and right => invariant satisfied!
• middle key pushed up

• Consolidate 5* into left node

17

24

2* 3* 5* 7* 8* 14* 16* 19* 20* 24* 27* 29* 33* 34* 38* 39*

Root Node171717

5 30

Inserting 8* into a B+ Tree: Root Grows Up, Pt 3

• Net effect
• d keys on the left and right
• middle key pushed up

• Here, we ended up creating a new root and increasing depth => rare

17

13 24 30

2* 3* 5* 7* 8* 14* 16* 19* 20* 24* 27* 29* 33* 34* 38* 39*

Root Node

5

Copy up vs Push up!

The leaf entry (5) was copied up
We can’t lose the original key: all keys must be in leaves

The index entry (17) was pushed up
We don’t need it any more for routing => convince yourself!

17

13 24 30

2* 3* 5* 7* 8* 14* 16* 19* 20* 24* 27* 29* 33* 34* 38* 39*

Root Node

5

B+ Tree Insert: Algorithm Sketch
1. Find the correct leaf L.

2. Put data entry onto L.
• If L has enough space, done!
• Else, must split L (into L and a new node L2)

• Redistribute entries evenly, copy up middle key (and ptr to L2)
• Insert index entry pointing to L2 into parent of L.

B+ Tree Insert: Algorithm Sketch Part 2
• Step 2 can happen recursively

• To split index node, redistribute entries evenly, but push up middle
key (and ptr to new index node). (Contrast with leaf splits)

• Splits “grow” tree
• Tree growth: gets wider if possible from bottom up
• Worst case, adds another level with a new root
• Ensures balance & therefore the logarithmic guarantee

After
17

5 13 24 30

2* 3* 5* 7* 8* 14* 16* 19* 20* 24* 27* 29* 33* 34* 38* 39*

Root Node
Before

We will skip deletion
• In practice, occupancy invariant often not enforced during deletion
• Just delete leaf entries and leave space

• If new inserts come, great
• This is common

• If page becomes completely empty, can delete
• Parent may become underfull
• That’s OK too

• Guarantees still attractive: logF(total number of inserts)

• Textbook describes algorithm for rebalancing and merging on deletes

BULK LOADING B+-TREES

Bulk Loading of B+ Tree Part 1
• Suppose we want to build an index on a large table from scratch
• Would it be efficient to just call insert repeatedly

• Q: No … Why not?

Bulk Loading of B+ Tree Part 2

• Constantly need to search from root
• Modifying random pages: poor cache efficiency
• Leaves poorly utilized (typically half-empty)

16

Smarter Bulk Loading a B+ Tree

4 7 10 134 7 10 13

1* 2* 3* 4* 5* 6* 7* 8* 9* 10* 11* 12* 13* 14* 15* 16* 17* 18*

• Sort the input records by key:
• 1*, 2*, 3*, 4*, …
• We’ll learn a good disk-based sort algorithm soon!

• Fill leaf pages to some fill factor (e.g. ¾)
• Updating parent until full

Smarter Bulk Loading a B+ Tree Part 2

• Sort the input records by key:
• 1*, 2*, 3*, 4*, …

• Fill leaf pages to some fill factor (e.g. ¾)
• Update parent until full
• Then create new sibling and copy over half: same as in index node splits for insertion

134 7

10

1* 2* 3* 4* 5* 6* 7* 8* 9* 10* 11* 12* 13* 14* 15* 16* 17* 18*

16

Smarter Bulk Loading a B+ Tree Part 3

• Lower left part of the tree is never touched again
• Occupancy invariant maintained:

• leaves filled beyond d, rest of the nodes via insertion split procedure

134 7

10

1* 2* 3* 4* 5* 6* 7* 8* 9* 10* 11* 12* 13* 14* 15* 16* 17* 18*

16

Never Touched Again

19 22

19* 20* 21* 22* 23* 24*

134 7

10

1* 2* 3* 4* 5* 6* 7* 8* 9* 10* 11* 12* 13* 14* 15* 16* 17* 18*

16

Smarter Bulk Loading a B+ Tree Part 4

• Benefits: Better
• Cache utilization than insertion into random locations
• Utilization of leaf nodes (and therefore shallower tree)
• Layout of leaf pages (more sequential)

Summary
• B+ Tree is a powerful dynamic indexing structure

• Inserts/deletes leave tree height-balanced; logFN cost
• High fanout (F) means height rarely more than 3 or 4.
• Higher levels stay in cache, avoiding expensive disk I/O
• Almost always better than maintaining a sorted file.
• Widely used in DBMSs!

• Bulk loading can be much faster than repeated inserts for creating a B+ tree on a large
data set.

