Tree Indexes

Alvin Cheung
Aditya Parameswaran
Reading: R & G Chapter 10

Input

Slmple ldea? Heap

File
« Step 1: Sort heap file & leave some space

* Pages physically stored in logical order (sequential access)

« Maintenance as new records are added/deleted is a pain, can lead
to B updates in the worst case (move everything down or up)

« Step 2: Use binary search on this sorted heap file: log_2(B) pages read
* Fan-out of 2 2 deep tree - lots of I/Os

« Examine entire records just to read key during search: would
prefer log_2(K) where K is number of pages to store keys << B

Let’s fix these assumptions

Idea: Keep separate (compact) key lookup pages, laid out sequentially
« Maintaining key = recordID mapping [We'll revisit this later]

No need to sort heap file anymore! Just sort key lookup pages

Can use binary search on these lookup pages as opposed to on all of the data pages
« Still have a deep tree due to fan-out of 2 - lots of I/Os

Also, maintenance of the key lookup pages is a pain! Worst case K updates

HBEERGEEN CEEN GEEN GaEE

9@/
(04
2

)Ae
Y%

Page 4

(27, Joe) (34, Kit) (1, Kim) (42, Hal)

Let’s fix these assumptions, take 2

Idea: repeat the process!
Lookup pages for the lookup
pages

And then lookup pages for
the lookup pages for the
lookup pages,

And while we’re at it, we can
fix the fanout to be >> 2

That is essentially the idea

* 38*

39

behind B+ Trees ...

We'll find out why the >
pointers are helpful later Q

Page 4

(1, Kim) (42, Hal)

Enter the B+ Tree, More Formally

* Dynamic Tree Index
* Always Balanced
« High fanout
« Support efficient insertion & deletion
* Grows at root not leaves!

- “4+77 B-tree that stores data entries in leaves only

» Helps with range search

B+ Trees: How to Read an Interior Node

Values &

° NOde[..., (KL’ PL)’] >4 Pointers \S/ilzuve:l\;
Ki<=Kforall Kin P_
Sub-tree

Example of a B+ Tree

317 E
Values v:

24<=v<30

35 13 ¢ . . 4124 5ou G 'Page6

Page 4
Key -> Pointer
to record

HEERGEEN DN GEEN) GEE

Page 2 Page 3 Page 5 Page 7 Page 8 Page 9

Property 1: Nodes in a B+ tree must obey an occupancy invariant
« This allows us to guarantee that lookup costs are bounded
* Invariant: each interior node is full beyond a certain minimum: in this case [and typically], at least half full
* This minimum, d, is called the order of the tree

* Here, max # of entries = 4. Thus d = 2.
* Guarantee: d <= # entries <= 2d. In this tree, 2 <= # entries <=4
* Root doesn’t need to obey this invariant
+ Same invariant holds for leaf nodes: at least half full (d may differ, here it is the same)

Example of a B+ Tree

1178 H B ! Valuesv:
24<=v<30

35 M43 € o o 124 (150 ¢

Page 4 " Page 6

Key -> Pointer
to record

HEERGEEN DN GEEN) GEE

Page 2 Page 3 Page 5 Page 7 Page 8 Page 9

Property 1: Nodes in a B+ tree must obey an occupancy invariant
» Each interior/leaf node is full beyond a certain minimum d
Property 2: Leaf pages at bottom need not be stored in sequence in logical order

* Next and prev. pointers help examining them in sequence [useful as we will see soon]

B+ Trees and Scale

Key -> Pointer
to record

* How many records can this height 1 B+ tree index?
* Max entries = 4; Fan-out (# of pointers) = 5
* Height 1: 5 (pointers from root) x 4 (slots in leaves) = 20 Records

B+ Trees and Scale Part 2

* How many records can this height 3 B+ tree index?
* Fan-out = 5; Max entries = 4
* Height 3: 5 (root) x 5 (level 2) x 5 (level 3) x 4 (leaves) = 53 x 4 = 500 Records

Extending this: B+ Trees in Practice

(Warning: Sloppy back-of-the-envelope calculation!)
Say 128KB pages, with around 40B per (val, ptr) pair
« Max entries = roughly 128KB/40B = approx. 3000 2000 2000
« Max fanout = 3000+1 = approx. 3000 [})ﬁ 5000
- Say 2/3 are filled on average 2000
 Average fan-out/entries = approx. 2000 2000

At these capacities
« Height 1: 2000 (pointers from root) x 2000 (entries per leaf) = 20002 = 4,000,000

« Height 2: 2000 (pointers from root) x 2000 (pointers from level 2) x 2000 (entries
per leaf) = 20003 = 8,000,000,000

Core takeaway: Even depths of 3 allow us to index a massive # of records!

Searching the B+ Tree

HEERGEEN DN GEEN) GEE

Page 2 Page 3 Page 5 Page 7 Page 8 Page 9

* Procedure:
* Find split on each node (Binary Search)
* Follow pointer to next node

Searching the B+ Tree: Find 27

HEER RGN DN GEEN EE

Page 2 Page 3 Page 5 Page 7 Page 8 Page 9

* Find key =27
* Find split on each node (Binary Search)
* Follow pointer to next node

Searching the B+ Tree: Fetch Data

{ 4) ' Page 1

35 M43 € : : 1124 £330 ¢

Page 4 " Page 6

| A G G S G

Page 2 Page 3 Page 5 Page 7 Page 8 Page 9

Page 1 Page 2 Page 3 Page 4

(5, Kay) (3, Jim) I(27,Joe) (34, Kit)| (1, Kim) (42, Hal)

Searching the B+ Tree: Find 27 and up

HEER RGN DN GEEN EE

Page 2 Page 3 Page 5 Page 7 Page 8 Page 9

* Find keys >=27
* Find 27 first, then traverse leaves following pointers
* This is an example of a range scan: value in [a, b]
» Benefit: no need to go back up the tree! Saves I/Os

Inserting 26™ into a B+ Tree Part 1

213 2 17§24 B30 ©

pels] [Jsfe] 1 Jpelsl=]

 Find the correct leaf

Inserting 26™ into a B+ Tree Part 2

213 217 £124 £ 30 ©

wolis] | Qo] |

* Find the correct leaf
* If there is room in the leaf just add the entry

Inserting 26 into a B+ Tree Part 3

213 217 £124 £ 30 ©

wolis] | Qo] |

* Find the correct leaf
* If there is room in the leaf just add the entry

« Sort the leaf page by key

Inserting 8" into a B+ Tree: Find Leaf

2 13 217 £ 24 0130 §

peles] Lol 1 fPelrle]

Find the correct leaf

Inserting 8" into a B+ Tree: Insert

2 13 217 &124 0130 ©

peles] Lol 1 fPelrle]

* Find the correct leaf
« Split leaf if there is not enough room

Inserting 8" into a B+ Tree: Split Leaf

2 13 217 &124 0130 ©

peles] Lol 1 fPelrle]

* Find the correct leaf
« Split leaf if there is not enough room
» Redistribute entries evenly

Inserting 8" into a B+ Tree: Split Leaf, cont

2 13 217 &124 0130 ©

L Pl 1 fleled | Pl

s el
* Find the correct leaf
« Split leaf if there is not enough room
» Redistribute entries evenly

* Fix next/prev pointers

Inserting 8* into a B+ Tree: Fix Pointers

213 217 £124 0130 ¢

HENRGEENCEEN RN G

* Find the correct leaf
« Split leaf if there is not enough room
» Redistribute entries evenly
* Fix next/prev pointers

Inserting 8* into a B+ Tree: Mid-Flight

213 217 £124 0130 ¢

HENRGEERCEEN RN

« Something is still wrong!

Inserting 8* into a B+ Tree: Copy Middle Key

213 217 £124 0130 ¢

L el Jeled [el 1 fpell=]

- Copy up from leaf the middle key and pointer to the orphan leaf
* This is what we need to access it

Inserting 8* into a B+ Tree: Split Parent, Part 1

O BN 213 B17 224 50 ¢

L el Jeled [el 1 fpell=]

 Copy up from leaf the middle key and pointer to the orphan leaf
* No room in parent? (Parent now has 2d+1 instead of 2d)

* Recursively split index nodes

« Redistribute the rightmost d+1 keys

Inserting 8* into a B+ Tree: Split Parent, Part 2

217 124 150 ¢

L el Jeled [el 1 fpell=]

 Copy up from leaf the middle key and pointer to the orphan leaf
« No room in parent? Recursively split index nodes

« Redistribute the rightmost d+1 keys

* Not enough: we now have two roots!

Inserting 8" into a B+ Tree: Root Grows Up

of RIPENEELNS

L el Jeled [el 1 fpell=]

 No room in parent? Recursively split index nodes
« Redistribute the rightmost d+1 keys
* To fix, create a new root:
* Push up from interior node the middle key (and assoc. pointer)

Inserting 8* into a B+ Tree: Root Grows Up, Pt 2

L el Jeled [el 1 fpell=]

* Net effect
* d keys on the left and right => invariant satisfied!
* middle key pushed up

« Consolidate 5* into left node

Inserting 8" into a B+ Tree: Root Grows Up, Pt 3

L el Jeled [el 1 fpell=]

* Net effect
« d keys on the left and right
* middle key pushed up
 Here, we ended up creating a new root and increasing depth => rare

Copy up vs Push up!

L el Jeled [el 1 fpell=]

The leaf entry (5) was copied up

We can’t lose the original key: all keys must be in leaves
The index entry (17) was pushed up

We don’t need it any more for routing => convince yourself!

B+ Tree Insert: Algorithm Sketch

1. Find the correct leaf L.

2. Put data entry onto L.
 If L has enough space, done!
« Else, must split L (into L and a new node L2)
 Redistribute entries evenly, copy up middle key (and ptr to L2)
* Insert index entry pointing to L2 into parent of L.

B+ Tree Insert: Algorithm Sketch Part 2

« Step 2 can happen recursively

« To split index node, redistribute entries evenly, but push up middle
key (and ptr to new index node). (Contrast with leaf splits)

« Splits “grow” tree
» Tree growth: gets wider if possible from bottom up
* \Worst case, adds another level with a new root
* Ensures balance & therefore the logarithmic guarantee

Before

Z'|3‘ S'|7'||14'|16'l | ||19'|20'| | ||24'|17'|Z9'| | |33'|S4'|58’|39‘|
S j —) —
N N\ N N

CENN GEON STHEN STEN DGO GE0E
N)) 7 N

We will skip deletion

« In practice, occupancy invariant often not enforced during deletion
« Just delete leaf entries and leave space

* If new inserts come, great
* This is common

« If page becomes completely empty, can delete

Parent may become underfull
That’s OK too

« Guarantees still attractive: logg(total number of inserts)

« Textbook describes algorithm for rebalancing and merging on deletes

BULK LOADING B+-TREES

Bulk Loading of B+ Tree Part 1

« Suppose we want to build an index on a large table from scratch
- Would it be efficient to just call insert repeatedly
* Q:No ... Why not?

Bulk Loading of B+ Tree Part 2

« Constantly need to search from root
« Modifying random pages: poor cache efficiency
« Leaves poorly utilized (typically half-empty)

Smarter Bulk Loading a B+ Tree

"4 B7 B0 8138

HEERGEAN REaR EEEEEEEN GEEE

« Sort the input records by key:

« 1%,2%, 3% 4% ...

« We’ll learn a good disk-based sort algorithm soon!
* Fill leaf pages to some fill factor (e.g. %4)

* Updating parent until full

Smarter Bulk Loading a B+ Tree Part 2

2 13 £16

) el] blelef § Lol | fefeds] | felofe] |

« Sort the input records by key:
« 1%,2%, 3% 4% ...
* Fill leaf pages to some fill factor (e.g. %4)
* Update parent until full
* Then create new sibling and copy over half: same as in index node splits for insertion

Smarter Bulk Loading a B+ Tree Part 3

"4 8 7¢C : : 113 5116 &

) e] blel=d) Lol | fefeds] | felofe] |

« Lower left part of the tree is never touched again
« Occupancy invariant maintained:
 l|eaves filled beyond d, rest of the nodes via insertion split procedure

Smarter Bulk Loading a B+ Tree Part 4

polofo] flspefs] frlrfes] fofofe] fffele]

* Benefits: Better
* Cache utilization than insertion into random locations
« Utilization of leaf nodes (and therefore shallower tree)
« Layout of leaf pages (more sequential)

Summary

B+ Tree is a powerful dynamic indexing structure
* Inserts/deletes leave tree height-balanced; logeN cost
* High fanout (F) means height rarely more than 3 or 4.
* Higher levels stay in cache, avoiding expensive disk 1/0
* Almost always better than maintaining a sorted file.
* Widely used in DBMSs!
- Bulk loading can be much faster than repeated inserts for creating a B+ tree on a large
data set.

