
Index Files

Alvin Cheung
Aditya Parameswaran

R & G - Chapter 9-10

Connecting Back to the Storage Layer
• So far, we have been talking about a B+tree index pointing to

unordered pages in a heap file
• This is not the only approach we can take.

• We’ll talk about various alternatives for the:
• Leaf nodes (the interface between index and the data)
• Heap file (the actual data)

Three basic alternatives for leaf nodes

• Also applies for data entries for other types of indexes
• We’ll look in the context of B+-trees, but applies to any index

• Three basic alternatives (Textbook uses same numbering!)
• Alternative 1: By Value
• Alternative 2: By Reference this is what we’ve already seen
• Alternative 3: By List of references

Alternative 1: By Value
• Leaf pages store records directly

• No need to follow pointers

17

5 24

(2, Joe) (3, Jim) (5, Kay) (7, Dan) (20, Tim)

Root Node

(24, Kit)

Leaves
with Data

Interior Nodes

uid name

2 Joe

3 Jim

5 Kay

7 Dan

20 Tim

24 Kit

Alternative 2: By Reference Pairs
• For each k, store recordId of matching data record as pairs

• Each entry in leaf: <k, recordId>
• Recordid = [page id, slot id]

• We used this previously

uid name
2 Joe

3 Jim

5 Kay

7 Dan

20 Tim

24 Kit

(2, Joe) (3, Jim) (5, Kay) (7, Dan) (20, Tim) (24, Kit)

17

5 24

(2, [1,1]) (3, [1,2]) (5, [2,1]) (7, [2,2]) (20, [3,1])

Root Node

(24, [3,2])

Leaf nodes

Interior Nodes

Index File

Index Contains
(Key, Record Id)

Pairs

Alternative 3: By Reference List
• For each k, store recordIds of matching records as a list

• Each leaf entry: <k, {list of rids of matching data records}>
• Alternative 3 more compact than alternative 2

• Very large rid lists can span multiple blocks, needs bookkeeping to manage that

(2, Joe) (2, Jim) (2, Kay) (3, Dan) (3, Tim) (20, Kit)

17

5 24

(2, {[1,1], [1,2], [2, 1]} (3, {[2,2], [3, 1]}) (20, {3, 2}])

Root Node

…

Leaf Nodes

Interior Nodes

Index File

Index Contains
(Key, {list of record Id}) Pairs

…

By Value vs. By Reference
• Both Alternative 2 and Alternative 3 index data by reference

• If we want to support multiple indexes per table, by reference is required
• Otherwise we would be replicating entire tuples
• Q: Why is replicating a problem?
• Replicating data leads to complexity during updates, so we want to avoid

• Need to make sure that all copies of the data are kept in sync.

Connecting Back to the Storage Layer
• So far, we have been talking about a B+tree index pointing to

unordered pages in a heap file
• This is not the only approach we can take.

• We’ll talk about various alternatives for the:
• Leaf nodes (the interface between index and the data)
• Heap file (the actual data, if outside the index) this is next

Clustered vs. Unclustered Index
• By-reference indexes (Alt 2 and 3) can be clustered or unclustered

• In reality, this is a property of the heap file associated with the index!
• Clustered index:

• Heap file records are kept mostly ordered according to search keys in index
• Heap file order need not be perfect: this is just a performance hint
• As we will see, cost of retrieving data records through index varies greatly based on

whether index is clustered or not!

• Note: different definition of “clustering” in AI/data mining:
• grouping nearby items in a high-dimensional space or network

Clustered vs. Unclustered Index Visualization 1
• To build a clustered index, first sort the heap file

• Leave some free space on each block for future inserts
• We then try to respect this order “as much as possible”

• In an unclustered index, there is no such restriction

Index

Clustered

Index

Unclustered

Clustered vs. Unclustered Index Visualization 2

Index

Clustered

Index

Unclustered

• To build a clustered index, first sort the heap file
• Leave some free space on each block for future inserts
• We then try to respect this order “as much as possible”

• In an unclustered index, there is no such restriction

Want records in
this key range

Clustered vs. Unclustered Index Visualization 3

Index

Clustered

Index

Unclustered

• To build a clustered index, first sort the heap file
• Leave some free space on each block for future inserts
• We then try to respect this order “as much as possible”

• In an unclustered index, there is no such restriction

Want records in
this key range 3 Heap file pages

vs. 5 pages.

In general
unclustered can be

arbitrarily bad!

• To build a clustered index, first sort the heap file
• Leave some free space on each block for future inserts
• We then try to respect this order “as much as possible”

• Blocks at end of file may be needed for inserts
• Order of data records is “close to”, but not identical to, the sort order

Clustered vs. Unclustered Index Visualization 5

Index

Clustered
Say this
block is

full.

Clustered vs. Unclustered Index Visualization 6

Index

Clustered

• To build a clustered index, first sort the heap file
• Leave some free space on each block for future inserts
• We then try to respect this order “as much as possible”

• Blocks at end of file may be needed for inserts
• Order of data records is “close to”, but not identical to, the sort order

Clustered vs. Unclustered Indexes Pros
• Clustered Index Pros

• Efficient for range searches due to potential locality benefits
• Sequential disk access, prefetching, etc.

• Support certain types of compression
• More soon on this topic

Clustered vs. Unclustered Indexes Cons
• Clustered Cons

• More expensive to maintain
• If we don’t maintain, ends up becoming closer to unclustered after many

inserts
• To maintain, we need to periodically update heap file order

• Can be done on the fly (more expensive per update, but lookup perf
is good throughout)

• Or lazily (less expensive per update but performance can degrade)
• To reduce cost of maintenance, heap file usually only packed to 2/3 (or

some other fraction <1) to accommodate inserts

