
B+-TREE COSTS

Slide Deck Title

Recall: Cost of Operations
• Can we do better with indexes?

• B: Number of data blocks
• R: Number of records per block
• D: Average time to read/write disk block

Heap File Sorted File

Scan all records B*D B*D

Equality Search 0.5*B*D (log2B)*D

Range Search B*D ((log2B)+pages))*D

Insert 2*D ((log2B) + B)*D

Delete (0.5*B+1)*D ((log2B) + B)*D

Recall we are interested in the
average case
Both reading and writing to the
disk cost I/Os!!

Slide Deck Title

Index Assumptions
• Store data by reference (Alternative 2)
• Clustered index with 2/3 full heap file pages

• Clustered à Heap file is initially sorted
• Fan-out (F) (i.e., branching factor) of tree internal node:

• Page of <key, pointer> pairs ~ O(R) [R: Number of records per block]
• in practice this is relatively large. Why?

• Assume static index
• No insert / update / delete

Index

1, 2, _ 3, 4, _ 5, 6, _ 7, 8, _ 9, 10, _Heap
File

Slide Deck Title

Cost of Operations

Heap File Sorted File Clustered Index

Scan all records B*D B*D

Equality Search 0.5*B*D (log2B)*D

Range Search B*D ((log2B)+pages))*D

Insert 2*D ((log2B) + B)*D

Delete (0.5*B+1)*D ((log2B) + B)*D

• Can we do better with indexes?

• B: Number of data blocks
• R: Number of records per block
• D: Average time to read/write disk block

Slide Deck Title

Scan all the Records

Recall assumption on clustered indexes:
heap file pages are only 2/3 full.

• Do we need an Index?
• No

• Cost? = 1.5 * B * D
• Why?

Index

1, 2, _ 3, 4, _ 5, 6, _ 7, 8, _ 9, 10, _

B: Number of data blocks
D: Average time to read/write disk block

Heap
File

Slide Deck Title

Cost of Operations: Scan
Heap File Sorted File Clustered Index

Scan all records B*D B*D 3/2 * B * D

Equality Search 0.5*B*D (log2B)*D

Range Search B*D ((log2B)+pages))*D

Insert 2*D ((log2B) + B)*D

Delete (0.5*B+1)*D ((log2B) + B)*D

• B: Number of data blocks
• R: Number of records per block
• D: Average time to read/write disk block

Slide Deck Title

Cost of Operations: Equality Search?
Heap File Sorted File Clustered Index

Scan all records B*D B*D 3/2 * B * D

Equality Search 0.5*B*D (log2B)*D

Range Search B*D ((log2B)+pages))*D

Insert 2*D ((log2B) + B)*D

Delete (0.5*B+1)*D ((log2B) + B)*D

• B: Number of data blocks
• R: Number of records per block
• D: Average time to read/write disk block
• F: Average internal node fanout
• E: Average # data entries per leaf

Slide Deck Title

Find the record with key 3

• Two steps
1. Search index to find the page and record-id
2. Fetch record-id from heap file

Index

1, 2, _ 5, 6, _ 7, 8, _ 9, 10, _Heap
File

3, 4, _3, 4, _

Slide Deck Title

Find the record with key 3
• I/Os for index search = height of index + 1
• = logF (# of leaves) + 1= logF (B*R/E) + 1

• B*R is the total number of records; E is the #records per leaf
• Why +1? Catches the cost of fetching the leaf from index

• E.g., F = 4, BR/E = 16: root à intermediate à leaf
• But Log4(16) = 2, and # of I/O is 3!

Index

1, 2, _ 3, 4, _ 5, 6, _ 7, 8, _ 9, 10, _Heap
File

Slide Deck Title

Find the record with key 3
• I/Os for lookup record in heap file by record-id: 1

• Recall record-id = <page, slot #>

• Total cost: (# of I/Os) * D
= (I/Os for index search + I/Os for heap file read) * D
= (logF (BR/E)+1+1) * D
= (logF (BR/E) + 2) * D Index

1, 2, _ 3, 4, _ 5, 6, _ 7, 8, _ 9, 10, _Heap
File

Slide Deck Title

Cost of Operations: Equality Search
Heap File Sorted File Clustered Index

Scan all records B*D B*D 3/2 * B * D

Equality Search 0.5*B*D (log2B)*D (logF(BR/E)+2)*D

Range Search B*D ((log2B)+pages))*D

Insert 2*D ((log2B) + B)*D

Delete (0.5*B+1)*D ((log2B) + B)*D

• B: Number of data blocks
• R: Number of records per block
• D: Average time to read/write disk block
• F: Average internal node fanout
• E: Average # data entries per leaf

Slide Deck Title

Cost of Operations: Range Search?
Heap File Sorted File Clustered Index

Scan all records B*D B*D 3/2 * B * D

Equality Search 0.5*B*D (log2B)*D (logF(BR/E)+2)*D

Range Search B*D ((log2B)+pages))*D

Insert 2*D ((log2B) + B)*D

Delete (0.5*B+1)*D ((log2B) + B)*D

• B: Number of data blocks
• R: Number of records per block
• D: Average time to read/write disk block
• F: Average internal node fanout
• E: Average # data entries per leaf

Slide Deck Title

Find records with keys between 3 and 7
• Three steps:

1. Search index to find first page to read
2. Scan index leaf pages to find which heap file pages to read
3. Read the corresponding records from heap file

• I/Os for 1: logF (B*R/E) + 1 [+1 for the index leaf page]
• I/Os for 3: (3/2 * #pages) [#pages: # of pages storing records between 3 and 7]
• I/Os for 2: (3/2 * #pages) [over-approximate and assume same as 2]
• Total cost : ((logF (B*R/E) + 1) + 2 * (3/2 * #pages) – 1) * D = (logF (B*R/E) + 3 * # pages) * D

• Why -1? We overcounted accessing the first leaf page in the index

Index

1, 2, _ 3, 4, _ 5, 6, _ 7, 8, _ 9, 10, _3, 4, _ 5, 6, _ 7, 8, _Heap
File

Slide Deck Title

Cost of Operations: Range Search
Heap File Sorted File Clustered Index

Scan all records B*D B*D 3/2 * B * D

Equality Search 0.5*B*D (log2B)*D (logF(BR/E)+2)*D

Range Search B*D ((log2B)+pages))*D (logF(BR/E)+3*pages)*D

Insert 2*D ((log2B) + B)*D

Delete (0.5*B+1)*D ((log2B) + B)*D

• B: Number of data blocks
• R: Number of records per block
• D: Average time to read/write disk block
• F: Average internal node fanout
• E: Average # data entries per leaf

Slide Deck Title

Cost of Operations: Insert?
Heap File Sorted File Clustered Index

Scan all records B*D B*D 3/2 * B * D

Equality Search 0.5*B*D (log2B)*D (logF(BR/E)+2)*D

Range Search B*D ((log2B)+pages))*D (logF(BR/E)+3*pages)*D

Insert 2*D ((log2B) + B)*D

Delete (0.5*B+1)*D ((log2B) + B)*D

• B: Number of data blocks
• R: Number of records per block
• D: Average time to read/write disk block
• F: Average internal node fanout
• E: Average # data entries per leaf

Slide Deck Title

Insert record with key 4.5
• Three steps:

1. Search index to find heap file page to modify
2. Read corresponding page and modify
3. Write back the modified index leaf and heap file pages

• I/Os for 1: logF (B*R/E) + 1
• I/Os for 2: 1
• I/Os for 3: 2 [1 for index leaf, 1 for heap file page]
• Total cost : ((logF (B*R/E) + 4) * D

Index

1, 2, _ 3, 4, _ 5, 6, _ 7, 8, _ 9, 10, _3, 4, _Heap
File

Slide Deck Title

Cost of Operations: Insert
Heap File Sorted File Clustered Index

Scan all records B*D B*D 3/2 * B * D

Equality Search 0.5*B*D (log2B)*D (logF(BR/E)+2)*D

Range Search B*D ((log2B)+pages))*D (logF(BR/E)+3*pages)*D

Insert 2*D ((log2B) + B)*D (logF(BR/E)+4)*D

Delete (0.5*B+1)*D ((log2B) + B)*D

• B: Number of data blocks
• R: Number of records per block
• D: Average time to read/write disk block
• F: Average internal node fanout
• E: Average # data entries per leaf

Slide Deck Title

Cost of Operations: Delete
Heap File Sorted File Clustered Index

Scan all records B*D B*D 3/2 * B * D

Equality Search 0.5*B*D (log2B)*D (logF(BR/E)+2)*D

Range Search B*D ((log2B)+pages))*D (logF(BR/E)+3*pages)*D

Insert 2*D ((log2B) + B)*D (logF(BR/E)+4)*D

Delete (0.5*B+1)*D ((log2B) + B)*D (logF(BR/E)+4)*D

• B: Number of data blocks
• R: Number of records per block
• D: Average time to read/write disk block
• F: Average internal node fanout
• E: Average # data entries per leaf

Slide Deck Title

Cost of Operations: Big O Notation
Heap File Sorted File Clustered Index

Scan all records O(B) O(B) O(B)

Equality Search O(B) O(log2B) O(logFB)

Range Search O(B) O(log2B) O(logFB)

Insert O(1) O(B) O(logFB)

Delete O(B) O(B) O(logFB)

• B: Number of data blocks
• R: Number of records per block
• D: Average time to read/write disk block
• F: Average internal node fanout
• E: Average # data entries per leaf

Slide Deck Title

Constant factors
• Assume you can do 100 sequential I/Os in the time of

1 random I/O

• For a particular lookup, is a B+-tree better than a full-
table scan?
• Better be very “selective”!

• Visit < ~1% of pages!
• Two ways to make that happen:

• Use a clustered index so that most reads are sequential
• Use SSD so that random and sequential reads have the

same cost

Slide Deck Title

Summary
• Query Structure
• Understand composite search keys
• Lexicographic order and search key prefixes

• Data Storage
• Data Entries: Alt 1 (tuples), Alt 2 (recordIds), Alt 3 (lists of

recordIds)
• Clustered vs. Unclustered

• Only Alt 2 & 3!

Slide Deck Title

Summary
• Variable length key refinements
• Fill factors for variable-length keys
• Prefix and suffix key compression

• B+-tree Cost Model
• Attractive big-O
• But don’t forget constant factors of random I/O

• Hard to beat sequential I/O of scans unless very selective
• Indexes beyond B+-trees for more complex searches

