
Relational Algebra

Alvin Cheung
Aditya Parameswaran

R & G, Chapters 4.1 - 4.2

Architecture of a DBMS: What we’ve learned

Database
Management

System

Database

Query Parsing
& Optimization

Relational Operators

Files and Index Management

Buffer Management

Disk Space Management

SQL ClientCompleted

Completed

Completed

You are here!

Completed

Today: definitions of the
relational operators.

Coming soon:
implementations

An Overview of the Layer Above

SELECT S.name
FROM Reserves R, Sailors S
WHERE R.sid = S.sid
AND R.bid = 100
AND S.rating > 5

SQL Query

Query Parser
& Optimizer

𝜋S.name(𝜎bid=100⋀rating>5(

Reserves⋈R.sid=S.sid Sailors))

Relational Algebra

𝜋S.name

𝜎R.bid=100 ⋀ S.rating > 5

⋈R.sid=S.sid

Reserves Sailors

(Logical) Query Plan:

Equivalent to…

On-the-fly
Select IteratorBut actually will

produce… ⋈R.sid=S.sid

𝜋S.name

𝜎R.bid=100

Reserves

Sailors

𝜎S.rating>5

Optimized (Physical) Query Plan: On-the-fly
Project Iterator

Indexed Nested
Loop Join Iterator

Heap Scan
IteratorB+-Tree

Indexed Scan
Iterator

Operator Code

SQL vs Relational Algebra

SELECT S.name
FROM Reserves R, Sailors S
WHERE R.sid = S.sid
AND R.bid = 100
AND S.rating > 5

SQL Query

Query Parser
& Optimizer

𝜋S.name(𝜎bid=100⋀rating>5(

Reserves⋈R.sid=S.sid Sailors))

Relational Algebra

𝜋S.name

𝜎R.bid=100 ⋀ S.rating > 5

⋈R.sid=S.sid

Reserves Sailors

(Logical) Query Plan:

Equivalent to…

On-the-fly
Select IteratorBut actually will

produce… ⋈R.sid=S.sid

𝜋S.name

𝜎R.bid=100

Reserves

Sailors

𝜎S.rating>5

Optimized (Physical) Query Plan: On-the-fly
Project Iterator

Indexed Nested
Loop Join Iterator

Heap Scan
IteratorB+-Tree

Indexed Scan
Iterator

Operator Code

𝜋S.name(𝜎bid=100⋀rating>5(

Reserves⋈R.sid=S.sid Sailors))

SELECT S.name
FROM Reserves R, Sailors S
WHERE R.sid = S.sid
AND R.bid = 100
AND S.rating > 5

SQL Query

Relational Algebra
Operational description of

a computation.

Systems execute relational algebra
query plan.

SQL
A declarative expression

of the query result

Relational Algebra

SQL vs. Relational Algebra
SELECT S.name
FROM Reserves R, Sailors S
WHERE R.sid = S.sid
AND R.bid = 100
AND S.rating > 5

𝜋S.name(𝜎R.bid=100 ⋀ S.rating>5(R ⋈R.sid=S.sid S))

• Why do humans like SQL
• It’s declarative
• Say what you want, not how to get it
• Enables system to optimize the how

• Why do systems like rel. algebra
• It’s operational
• It describes the steps for how to

compute a query result

• DBMSs internally transform SQL into
relational algebra expressions,
manipulate and simplify it, and figure
out the best operational mechanism
to compute the SQL query result

Relational Algebra Preliminaries
• Algebra of operators on relation instances

• Just like other algebras: linear algebra or elementary algebra
• Operating on matrices or variables

• 𝜋S.name(𝜎R.bid=100 ⋀ S.rating>5(R ⋈R.sid=S.sid S))

• Closed: result is also a relation instance
• Enables rich composition!
• Just like a linear algebraic expression on matrices returns a matrix

• Typed: input schema determines output
• Can statically check whether queries are legal.
• Same story for linear algebra – input sizes determine output sizes

Relational Algebra and Sets
• Pure relational algebra has set semantics

• No duplicate tuples in a relation instance
• vs. SQL, which has multiset (bag) semantics
• We will switch to multiset in the system discussion

Relational Algebra Operators: Unary
• Unary Operators: on single relation
• Projection (p): Retains only desired columns (vertical)
• Selection (s): Selects a subset of rows (horizontal)
• Renaming (𝜌): Rename attributes and relations.

Relational Algebra Operators: Binary
• Binary Operators: on pairs of relations
• Union (È): Tuples in r1 or in r2.
• Set-difference (—): Tuples in r1, but not in r2.
• Cross-product (´): Allows us to combine two relations.

Relational Algebra Operators: Compound
• Compound Operators: common “macros” for the 6 unit ops above
• Intersection (∩): Tuples in r1 and in r2.
• Joins (⋈𝜃 , ⋈): Combine relations that satisfy predicates

Relational Algebra
contd.

Alvin Cheung
Aditya Parameswaran

R & G, Chapters 4.1 - 4.2

Announcements
• Look at the weekly post!
• We've noticed OH ticket descriptions becoming a bit sparse,

making it harder for us to help you
• We’re starting to enforce some minimal requirements to help with OH

tickets (see @19) Specify:
• subpart
• description of your problem/bug
• debugging steps taken (i.e. writing tests, running IntelliJ debugger),
• link to updated GitHub repo

• Full details in @19
• Turn on your video if you can!

https://piazza.com/class/kducz9b1i3h78i?cid=19

Relational Algebra Operators
• Projection (p): Retains only desired columns (vertical)
• Selection (s): Selects a subset of rows (horizontal)
• Renaming (𝜌): Rename attributes and relations
• Union (È): Tuples in r1 or in r2.
• Set-difference (—): Tuples in r1, but not in r2.
• Cross-product (´): Allows us to combine two relations.

• Intersection (∩): Tuples in r1 and in r2.
• Joins (⋈𝜃 , ⋈): Combine relations that satisfy predicates

Projection (p)
• Corresponds to the SELECT list in SQL
• Schema determined by schema of attribute list

• Names and types correspond to input attributes
• Selects a subset of columns (vertical)

psname,age(S2)

sname age
yuppy 35.0

lubber 55.5
guppy 35.0

rusty 35.0

List of Attributes
Relational Instance S2

sid sname rating age
28 yuppy 9 35.0

31 lubber 8 55.5
44 guppy 5 35.0

58 rusty 10 35.0

Projection (p), cont.
• Set semantics à results in fewer rows

• Real systems don’t automatically remove duplicates
• Why? (Semantics and Performance reasons)

page(S2)
age
35.0

55.5
35.0

35.0

age
35.0

55.5

Multiset

Set

Relational Instance S2

sid sname rating age
28 yuppy 9 35.0

31 lubber 8 55.5
44 guppy 5 35.0

58 rusty 10 35.0

Selection(𝜎)

• Selects a subset of rows (horizontal)
• Corresponds to the WHERE clause in SQL
• Output schema same as input
• Duplicate Elimination? Not needed if input is a set.

𝜎rating>8(S2)
sid sname rating age
28 yuppy 9 35.0

31 lubber 8 55.5
44 guppy 5 35.0

58 rusty 10 35.0

Selection Condition (Boolean Expression)

sid sname rating age

28 yuppy 9 35.0
58 rusty 10 35.0

Relational Instance S2

Composing Select and Project

• Names of sailors with rating > 8:

• What about:
• Invalid types. Input to 𝜎rating>8 does not contain rating.

sid sname rating age

28 yuppy 9 35.0
31 lubber 8 55.5

44 guppy 5 35.0
58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0

58 rusty 10 35.0

sname
yuppy

rusty
psname𝜎rating>8

𝜎rating>8(psname(S2))

psname(𝜎rating>8(S2))

Union (∪)

• Takes the set union of two sets
• The two input relations must be compatible:

• Same sequence of attributes and types thereof
• SQL Expression: UNION

S1 S2

S1 ∪ S2

S1 ∪ S2

Union (∪) VS Union ALL

• In union under set semantics, duplicate elimination is needed
• SQL Expression: UNION (get rid of duplicates) vs. UNION ALL (keep dup.)

sid sname rating age
28 yuppy 9 35.0

31 lubber 8 55.5
44 guppy 5 35.0

58 rusty 10 35.0

Relational Instance S2

sid sname rating age
22 dustin 7 45.0

31 lubber 8 55.5
58 rusty 10 35.0

Relational Instance S1
sid sname rating age

22 dustin 7 45
28 yuppy 9 35.0

31 lubber 8 55.5
44 guppy 5 35.0

58 rusty 10 35.0

S1 ∪ S2

Set Difference (−)
• Same as with union, both input relations must be compatible.

• SQL Expression: EXCEPT

S1 S2 S1 − S2

S1 − S2

Set Difference (−), cont.
• Q: Do we need to eliminate duplicates like in UNION?

• Not required if inputs are sets
• SQL Expression: EXCEPT vs EXCEPT ALL

• Same as UNION/UNION ALL
• In EXCEPT duplicates are eliminated if they exist

sid sname rating age
22 dustin 7 45

S1 − S2

sid sname rating age
28 yuppy 9 35.0

44 guppy 5 35.0

S2 − S1
sid sname rating age
28 yuppy 9 35.0

31 lubber 8 55.5
44 guppy 5 35.0

58 rusty 10 35.0

Relational Instance S2

sid sname rating age
22 dustin 7 45.0

31 lubber 8 55.5
58 rusty 10 35.0

Relational Instance S1

Cross-Product (×)

• R1 × S1: Each row of R1 paired with each row of S1

• How many rows in result?
• |R1|*|S1|

• Do we need to worry about schema compatibility?
• Not needed.

• Do we need to do duplicate elimination?
• None generated.

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

S1:

sid bid day

22 101 10/10/96

58 103 11/12/96

R1:

×

sid bid day sid sname rating age

22 101 10/10/96 22 dustin 7 45.0

22 101 10/10/96 31 lubber 8 55.5

22 101 10/10/96 58 rusty 10 35.0

58 103 11/12/96 22 dustin 7 45.0

58 103 11/12/96 31 lubber 8 55.5

58 103 11/12/96 58 rusty 10 35.0

=

Renaming (𝜌 = “rho”)
• Renames relations and their attributes
• Convenient to avoid confusion when two relations overlap in attributes
• Can omit output name if we don’t want to rename the output

𝜌R(sid2, bid2, day) R1

𝜌R(sid->sid2, bid->bid2) R1

sid bid day

22 101 10/10/96

58 103 11/12/96

R1:

sid2 bid2 day

22 101 10/10/96

58 103 11/12/96

R:

Renaming (𝜌 = “rho”) contd.
• Yet another shorthand for renaming

• Again, can omit output name if we don’t want to rename the output
• For this case, can equivalently name each relation and then do cross-product

sid bid day sid sname rating age

22 101 10/10/96 22 dustin 7 45.0

22 101 10/10/96 31 lubber 8 55.5

22 101 10/10/96 58 rusty 10 35.0

58 103 11/12/96 22 dustin 7 45.0

58 103 11/12/96 31 lubber 8 55.5

58 103 11/12/96 58 rusty 10 35.0

R1 × S1

𝜌Temp1(1 à sid1, 4 à sid2) (R1 × S1)
Output
Name

Renaming List
position à
New Name

Input
Relation

sid1 bid day sid2 sname rating age

22 101 10/10/96 22 dustin 7 45.0

22 101 10/10/96 31 lubber 8 55.5

22 101 10/10/96 58 rusty 10 35.0

58 103 11/12/96 22 dustin 7 45.0

58 103 11/12/96 31 lubber 8 55.5

58 103 11/12/96 58 rusty 10 35.0

Temp1

Relational Algebra Operators
• Projection (p): Retains only desired columns (vertical)
• Selection (s): Selects a subset of rows (horizontal)
• Renaming (𝜌): Rename attributes and relations
• Union (È): Tuples in r1 or in r2.
• Set-difference (—): Tuples in r1, but not in r2.
• Cross-product (´): Allows us to combine two relations.

• Intersection (∩): Tuples in r1 and in r2. Next
• Joins (⋈𝜃 , ⋈): Combine relations that satisfy predicates

Compound Operator: Intersection
• Same as with union, both input relations must be compatible.
• SQL Expression: INTERSECT

S1 S2

S1 ∩ S2

S1 ∩ S2

Intersection (∩)

• Same story as — with respect to duplicates
• Duplicates don’t need to be eliminated if inputs are sets

sid sname rating age

31 lubber 8 55.5
58 rusty 10 35.0

S1 ∩ S2sid sname rating age
28 yuppy 9 35.0

31 lubber 8 55.5
44 guppy 5 35.0

58 rusty 10 35.0

Relational Instance S2

sid sname rating age
22 dustin 7 45.0

31 lubber 8 55.5
58 rusty 10 35.0

Relational Instance S1

Intersection (∩), Pt 2

• We saw that ∩ is a compound
operator.

• S1 ∩ S2 = ?

∩S1 S2

Intersection (∩), Pt 3

• S1 ∩ S2 = S1 – ?
• Q: What is “?”

S1 ?= –

∩S1 S2

Intersection (∩), Pt 4

• S1 ∩ S2 = S1 – (S1 – S2)

S1 ?= –

∩S1 S2

(–)S1 S2

Compound Operator: Join
• Joins are compound operators (like intersection):

• Generally, 𝜎𝜃(R × S)
• With possibly a rename in there (for natural join)

• Increasing degree of specialization
• Theta Join (⋈𝜃): join on logical expression 𝜃
• Equi-Join: theta join with theta being a conjunction of equalities
• Natural Join (⋈): equi-join on all matching column names

• (note: only one copy per column preserved!)
• Relating information across tables using joins/cross-products is super useful

and important
• Want to avoid cross-products
• We’ll learn efficient join algorithms

Theta Join (⋈𝜃) Semantics

• R ⋈𝜃 S = 𝜎𝜃(R × S)
• Apply a cross-product, then filter out tuples that

don’t match.
• If 𝜃 only contains equality conditions (with an AND

between them), this is called an equi-join

Theta Join (⋈𝜃) Example
• Say we want to find boats that people have reserved
• R1 ⋈sid=sid S1

• Confusing… hard to interpret!

• Q: How do we fix?

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

S1:

sid bid day

22 101 10/10/96

58 103 11/12/96

R1:

⋈sid=sid

sid bid day sid sname rating age

22 101 10/10/96 22 dustin 7 45.0

58 103 11/12/96 58 rusty 10 35.0
=

Theta Join (⋈𝜃) Example

• 𝜌(sid->sid1)R1 ⋈sid1=sid S1

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

S1:

sid1 bid day

22 101 10/10/96

58 103 11/12/96

R1:

⋈sid1=sid

sid1 bid day sid sname rating age

22 101 10/10/96 22 dustin 7 45.0

58 103 11/12/96 58 rusty 10 35.0
=

Another Theta Join (⋈𝜃) Self Join Example
• R ⋈𝜃 S = 𝜎𝜃(R × S)
• Example: More senior sailors for each sailor.
• 𝜌(sid1, sname1, rating1, age1) S1 ⋈ age1 < age S1

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

S1:

S1 S1

sid1 sname1 rating1 age1 sid sname rating age

22 dustin 7 45.0 22 dustin 7 45.0

22 dustin 7 45.0 31 lubber 8 55.5

22 dustin 7 45.0 58 rusty 10 35.0

31 lubber 8 55.5 22 dustin 7 45.0

31 lubber 8 55.5 31 lubber 8 55.5

31 lubber 8 55.5 58 rusty 10 35.0

58 rusty 10 35.0 22 dustin 7 45.0

58 rusty 10 35.0 31 lubber 8 55.5

58 rusty 10 35.0 58 rusty 10 35.0

Natural Join (⋈)
• Special case of equi-join in which equalities are specified for all

matching fields and duplicate fields are projected away

• Compute R × S
• Select rows where fields appearing in both relations have equal values
• Project onto the set of all unique fields.

Natural Join (⋈) Pt 2

• R ⋈ S

R1 ⋈ S1
S1:

sid bid day

22 101 10/10/96

58 103 11/12/96

R1:

sid bid day sid sname rating age

22 101 10/10/96 22 dustin 7 45.0

22 101 10/10/96 31 lubber 8 55.5

22 101 10/10/96 58 rusty 10 35.0

58 103 11/12/96 22 dustin 7 45.0

58 103 11/12/96 31 lubber 8 55.5

58 103 11/12/96 58 rusty 10 35.0

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

Natural Join (⋈), Pt 3

• R ⋈ S

• Commonly used for foreign key joins (as above).

R1 ⋈ S1
sid bid day sname rating age

22 101 10/10/96 dustin 7 45.0

58 103 11/12/96 rusty 10 35.0

sid bid day

22 101 10/10/96

58 103 11/12/96

R1:

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

S1:

Natural Join (⋈), Pt 3
• R ⋈ S

• Q: How do we express R1 ⋈ S1 using the other operators?
• R1 ⋈ S1 = 𝜋sid, bid, day, sname, rating, age 𝜎sid = sid1(R1 × 𝜌(sid->sid1) S1)
• R1 ⋈ S1 = 𝜋unique fld. 𝜎eq. matching fld.(R1 × 𝜌eq. matching fld. renamed S1)

R1 ⋈ S1
sid bid day sname rating age

22 101 10/10/96 dustin 7 45.0

58 103 11/12/96 rusty 10 35.0

sid bid day

22 101 10/10/96

58 103 11/12/96

R1:

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

S1:

Other Natural Join Variants
• We have convenient symbols for Outer joins:

• Left Outer join
• R ⟕ S

• Right Outer join
• R ⟖ S

• Full Outer join
• R ⟗ S

Complex Relational Algebra Expressions
• Algebras allow us to express sequences of operations in a

natural way.
• Example

• in arithmetic algebra: (x + 4)*(y - 3)
• Relational algebra allows the same.
• Three notations:

1. Sequences of assignment statements.
2. Expressions with several operators.
3. Expression trees.

Sequences of Assignments
• Create temporary relation names.

• Renaming can be implied by giving relations a list of attributes.
• R3(X, Y) := R1

• Example: R3 := R1 ⋈C R2 can be written:
R4 := R1 x R2
R3 := σC (R4)

Expressions with Several Operators
Precedence of relational operators:

1. Unary operators --- select, project, rename --- have highest precedence,
bind first.

2. Then come products and joins.
3. Then set operations bind last.

But you can always insert parentheses to force the order you desire.

Expression Trees
• Leaves are operands

(relations).
• Interior nodes are operators,

applied to their child or
children.

• Given R(sid, bid, day), S(sid,
sname, rating, age), find the
sids of all the sailors whose
rating>5 or have reserved
boat 100. S R

𝜎rating > 5
𝜎bid = 100

𝜋 sid 𝜋 sid

U

A Step Back: Why Did We Study This?
• Relational algebra expressions, just like linear algebra or elementary

algebra expressions are easy to manipulate for the DBMS
• Also the number of operators is small so it’s easy to work with.
• To figure out how to rewrite and simplify rel alg expressions, the

DBMS uses:
• Various heuristics
• Various cost functions

Simple Rewritings

• Example: Changing the order of predicate evaluation
• 𝜎exp1 ^ exp 2 R = 𝜎exp1 (𝜎exp2 R) = 𝜎exp2 (𝜎exp1 R)

• Example: Changing the order of joins
• (R ⋈ S) ⋈ T = R ⋈ (S ⋈ T)

An Example of a “Rewrite”: Push-Down
• Want reservations for sailors whose age > 40

𝜎age > 40 (R1 ⋈ S1)
sid bid day sname rating age

22 101 10/10/96 dustin 7 45.0

58 103 11/12/96 rusty 10 35.0

sid bid day

22 101 10/10/96

58 103 11/12/96

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

R1:

S1:

Q: Any other expressions?
Another equiv. exp: R1 ⋈ 𝜎age > 40 S1
è This may be cheaper to compute!

An Example of a “Rewrite”: Eliminating Nesting

• Names of sailors who’ve not reserved boat #103:

SELECT S.sname
FROM Sailors S
WHERE S.sid NOT IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid=103)

sid bid day

22 101 10/10/96

58 103 11/12/96

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

R:

S:

An Example of a “Rewrite”: Eliminating Nesting

• Names of sailors who’ve not reserved boat #103:

One approach:
𝜋sname R — 𝜋sname ((𝜎bid=103 R) ⋈ S)) sid bid day

22 101 10/10/96

58 103 11/12/96

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

R:

S:

Extended Relational Algebra
• Group By / Aggregation Operator (𝛾):

• 𝛾age, AVG(rating)(Sailors)
• With selection (HAVING clause):

• 𝛾age, AVG(rating), COUNT(*)>2(Sailors)

• Implicitly combines GROUP BY, HAVING and SELECT

Summary
• Relational Algebra: a small set of operators mapping relations to

relations
• Operational, in the sense that you specify the explicit order of

operations
• A closed set of operators! Mix and match.
• Easy to manipulate/rewrite/simplify
• Super powerful! Can encapsulate a lot of SQL functionality

• Basic ops include: s, p, ´, È, —
• Important compound ops: Ç, ⋈

