
Iterators, Relational Operators
and Joins
Hash Join Algorithms

Alvin Cheung
Aditya Parameswaran

Reading: R & G Chapter 12 & 14

Naïve in Memory Hash Join: R ⋈ S

• Requires equality predicate:
• Works for Equi-Joins & Natural Joins

• Assume R is smaller relation
• Require R to fit in memory

• Simple algorithm:
• Load all R into hash table
• Scan S and probe R

• Memory requirements?
• [R] < (B-2) * hash_fill_factor

Hash Table (B-2) Buffers

Ha
sh

 F
n.

Out BufferIn Buffer

What if R doesn’t fit?

Properties that help

• σsid=4 ∨ sid=6 (R ⋈sid S) = σsid=4(R ⋈sid S) U σsid=6(R ⋈sid S)

• Can Decompose Into Smaller “Partial Joins”
• R ⋈sid S = ∪ (σhash(sid)(R) ⋈sid σhash(sid)(S))
• Pick a hash function so that each σhash(sid)(R) fits in memory!

Announcements

• Midterm next week!
• Review session tomorrow

• Include descriptions in your OH tickets
• Try out “party” mode and let us know how it goes

• Please turn on your video if you can

Grace Hash Join

• Requires equality predicate:
• Equi-Joins & Natural Joins

• Two Stages:
• Partition tuples from R and S by join key and store on scratch disk

• all tuples for a given key now reside in same partition
• same partition might have tuples with different keys but same hash value

• Build & Probe a separate hash table for each partition (like in Naïve
Hash)
• Assume partition of smaller relation fits in memory

• Recurse if necessary…

University of Tokyo's GRACE

Remember External Hashing?
Hash partitions hp of

size ~N/(B-1)

Conquer (hr)Divide (hp)

Hash partitions hr
Fully hashed!

B-1

1

… B

Sketch of Grace Hash Join

Conquer (hr)Divide (hp)

Hash partitions hr
Fully hashed!

B-1

1

… B
B-2Building

Relation
R

Divide (hp) Hash partitions hp of
size ~N/(B-1)

B-1

1

…

Sketch of Grace Hash Join, cont.

Conquer (hr)Divide (hp)

Hash partitions hr
Fully hashed!

B-1

1

… B
B-2Building

Relation
R

Probing
Relation

S

Note: probing partitions
stream, can be arbitrarily big!

PsuedoCode, Grace Hash
For Cur in {R, S}

For page in Cur
Read page into input buffer
For tup on page

Place tup in output buf hashp(tup.joinkey)
If output buf full then flush to disk partition

Flush output bufs to disk partitions

PsuedoCode, Grace Hash, cont.
For Cur in {R, S}

For page in Cur
Read page into input buffer
For tup on page

Place tup in output buf hashp(tup.joinkey)
If output buf full then flush to disk partition

Flush output bufs to disk partitions
For i in [0..(B-1)) // for each partition

For page in Ri
For tup on page

Build tup into memory hashr(tup.joinkey)
For page in Si

Read page into input buffer
For tup on page

Probe memory hashr(tup.joinkey) for matches
Send all matches to output buffer
Flush output buffer if full

Grace Hash Join

• An animation
• Two phases:
• Partition (divide)
• Build & Probe hash tables (conquer)

B-1 Buffers

1 Buffer

Grace Hash Join: Partition
R S

Partition 1

Partition 2

Grace Hash Join: Partition, Part 2
B-1 BuffersR S

1 Buffer

Partition 1

Partition 2

Grace Hash Join: Partition, Part 3
B-1 BuffersR S

1 Buffer

Partition 1

Partition 2

Grace Hash Join: Partition Part 4
B-1 Buffers

1 Buffer

R S
Partition 1

Partition 2

Grace Hash Join: Partition Part 5
B-1 Buffers

1 Buffer

R S
Partition 1

Partition 2

Grace Hash Join: Partition Part 6
B-1 Buffers

1 Buffer

R S
Partition 1

Partition 2

Grace Hash Join: Partition Part 7
B-1 Buffers

1 Buffer

R S
Partition 1

Partition 2

Grace Hash Join: PartitionGrace Hash Join: Partition Part 8
B-1 Buffers

1 Buffer

R S
1 Buffer

Partition 1

Partition 2

Grace Hash Join: Partition 9
B-1 Buffers

1 Buffer

R S
1 Buffer

Partition 1

Partition 2

Grace Hash Join: Partition Part 10
B-1 Buffers

1 Buffer

R S
1 Buffer

Partition 1

Partition 2

Grace Hash Join: Partition Part 11
B-1 Buffers

1 Buffer

R S
1 Buffer

Partition 1

Partition 2

Grace Hash Join: Partition Part 12

• Each key is assigned to one partition
• e.g., green star keys only in Partition 1

• Sensitive to key Skew
• Purple circle key

• Each partition could be on a different
disk or even different machine

Partition 1

Partition 2

Grace Hash Join: Build & Probe

. Hash Table (B-2) Buffers

1 Buffer 1 Buffer

Ne
w

 H
as

h
Fn

.
input output

Partition 1

Partition 2

Blue tuples are from R
Orange tuples are from S

Grace Hash Join: Build & Probe Part 2

Hash Table (B-2) Buffers

1 Buffer 1 Buffer

input output
Ne

w
 H

as
h

Fn
.

Partition 1

Partition 2

Blue tuples are from R
Orange tuples are from S

Grace Hash Join: Build & Probe Part 3

Hash Table (B-2) Buffers

1 Buffer 1 Buffer

input output
Ne

w
 H

as
h

Fn
.

Partition 1

Partition 2

Blue tuples are from R
Orange tuples are from S

Grace Hash Join: Build & Probe Part 4

Hash Table (B-2) Buffers

1 Buffer 1 Buffer

input output
Ne

w
 H

as
h

Fn
.

Partition 1

Partition 2

Blue tuples are from R
Orange tuples are from S

Grace Hash Join: Build & Probe Part 5

Hash Table (B-2) Buffers

1 Buffer 1 Buffer

input output
Ne

w
 H

as
h

Fn
.

Partition 1

Partition 2

Blue tuples are from R
Orange tuples are from S

Grace Hash Join: Build & Probe Part 6

Hash Table (B-2) Buffers

1 Buffer 1 Buffer

input output
Ne

w
 H

as
h

Fn
.

Partition 1

Partition 2

Blue tuples are from R
Orange tuples are from S

Grace Hash Join: Build & Probe Part 7

Hash Table (B-2) Buffers

1 Buffer 1 Buffer

input output
Ne

w
 H

as
h

Fn
.

Partition 1

Partition 2

Blue tuples are from R
Orange tuples are from S

Grace Hash Join: Build & Probe Part 8

Hash Table (B-2) Buffers

1 Buffer 1 Buffer

input output
Ne

w
 H

as
h

Fn
.

Hash Table (B-2) BuffersHash Table (B-2) BuffersPartition 1

Partition 2

Blue tuples are from R
Orange tuples are from S

Grace Hash Join: Build & Probe Part 9

1 Buffer 1 Buffer

input output
Ne

w
 H

as
h

Fn
.

Hash Table (B-2) BuffersPartition 1

Partition 2

Blue tuples are from R
Orange tuples are from S

Grace Hash Join: Build & Probe Part 10

1 Buffer 1 Buffer

input output
Ne

w
 H

as
h

Fn
.

Hash Table (B-2) BuffersPartition 1

Partition 2

Blue tuples are from R
Orange tuples are from S

Grace Hash Join: Build & Probe Part 11

Hash Table (B-2) Buffers

1 Buffer 1 Buffer

input output
Ne

w
 H

as
h

Fn
.

Partition 1

Partition 2

Blue tuples are from R
Orange tuples are from S

Grace Hash Join: Build & Probe Part 12

1 Buffer 1 Buffer

input output
Ne

w
 H

as
h

Fn
.

Hash Table (B-2) BuffersPartition 1

Partition 2

Blue tuples are from R
Orange tuples are from S

Summary of Grace Hash Join

What is the Cost?

Hash Table (B-2) Buffers

1 Buffer 1 Buffer

Ne
w

 H
as

h
Fn

.

R S
B-1 Buffers

1 Buffer

Hash
Read Write Read ?

Partitioning Phase:
B-1 partitions

Build & Probe Phase
Each partition of R of size up to B-2

Cost of Hash Join

• Partitioning phase: read+write both relations
⇒ 2([R]+[S]) I/Os

• Matching phase: read both relations, forward output
⇒ [R]+[S]

• Total cost of 2-pass hash join = 3([R]+[S])
• 3 * (1000 + 500) = 4500

[R]=1000, pR=100, |R| = 100,000
[S]=500, pS=80, |S| = 40,000

Hash Table (B-2) Buffers

1 Buffer 1 Buffer

N
ew

 H
as

h
Fn

.

R S
B-1 Buffers

1 Buffer

Hash
Read Write Read ?

Partitioning Phase:
B-1 partitions

Build & Probe Phase
Each partition of R of size up to B-2

Cost of Hash Join Part 2

• What’s the max size of R that can be processed in 1
pass of build & probe?

• Build hash table on R with uniform partitioning
• Partitioning Phase divides R into (B-1) runs of size [R] / (B-1)
• Matching Phase requires each ([R] / (B-1)) < (B-2)
• Solving backwards gives R < (B-1) (B-2) ≈ B2

• Note: no constraint on size of S (probing relation)!

[R]=1000, pR=100, |R| = 100,000
[S]=500, pS=80, |S| = 40,000

Hash Table (B-2) Buffers

1 Buffer 1 Buffer

N
ew

 H
as

h
Fn

.

R S
B-1 Buffers

1 Buffer

Hash
Read Write Read ?

Partitioning Phase:
B-1 partitions

Build & Probe Phase
Each partition of R of size up to B-2

Cost of Hash Join Part 3

• Naïve Hash Join: requires [R] < B
• Put all of R in hash table
• 1/3 the I/O cost of Grace!

• Grace Hash Join: 2-passes for [R] < B2

• Hybrid Hash Join: an algorithm that adapts between the two
• Tricky to tune

[R]=1000, pR=100, |R| = 100,000
[S]=500, pS=80, |S| = 40,000

passes

[R]
B B2

1

2

cost

[R]+[S]

3([R]+[S])

Naïve

Grace

TINSTAFL!!

Hash Join vs. Sort-Merge Join

• Sorting pros:
• Good if input already sorted, or need output sorted
• Not sensitive to data skew or bad hash functions

• Hashing pros:
• For join: # passes depends on size of smaller relation

• E.g. if smaller relation is <B, naïve/hybrid hashing is great
• Good if input already hashed, or need output hashed

Recap
• Nested Loops Join

• Works for arbitrary Θ
• Make sure to utilize memory in blocks

• Index Nested Loops
• For equi-joins
• When you already have an index on one side

• Sort/Hash
• For equi-joins
• No index required
• Hash better if one relation is much smaller than other

• No clear winners – may want to implement them all
• Be sure you know the cost model for each

• You will need it for query optimization!

