Relational Query
Optimization I:

The Plan Space
Alvin Cheung
Aditya Parameswaran

R&G 15

Architecture of a DBMS

Compietos =

Query Parsing
You are here ‘ & Optimization

Completed mp
Ofelplel[-iTol AW Files and Index Management
Completed >
Completed B

Relational Operators

Disk Space Management

Query Optimization is Magic

The bridge between a declarative domain-specific language...
* “What” you want as an answer

... and custom imperative computer programs
« “How” to compute the answer

A lot of smart people and a lot of time has been spent on this
problem!
Reminiscent of many cutting-edge “Al” problems

« Similar tricks: optimization + heuristic pruning

* Analogous to Al-based Software Synthesis

Invented in 1979 by Pat Selinger et al.

- We’ll focus on “System R” (“Selinger”) optimizers
* From IBM Research in Almaden
« “Cascades” optimizer is the other common one
- Later, with notable differences, but similar big picture

Access Path Selection
in a Relational Database Management System

P. Griffiths Selinger
M. M. Astrahan
D. D. Chamberlin
.. R. A, Lorie
é? T. G. Price

IBM Research Division, San Jose, California 95193

ABSTRACT: In a high level query and data retrieval. Nor does a user specify in what
manipulation language such as SQL, requests order joins are to be performed. The

Query Parsmg & Optimization: Query Lifecycle

Select *

: From Blah B —\b Query Parser
Where B.blah = blah

Query Rewriter

v

Query Optimizer

Plan Plan Cost <—> (Catalog Manager
Generator Estimator /J\
\/ N
l Schema
& Stats
Query Executor

Yik San Chan
AST

Yik San Chan
Get statistics to help the computation

Query Parsing & Optimization Part 2

c
i From BlahB ;
{ Where B.blah=blah |

Query parser

Checks correctness, authorization
Generates a parse tree
Straightfoward

Not our focus

Query Parser

Query Rewriter

!

Query Optimizer

T

Plan
Generator

Plan Cost
Estimator

V_/

Catalog Manager

v

Query Executor

Schema
& Stats

Query Parsing & Optimization Part 3

c
i From BlahB ;
{ Where B.blah=blah |

Query rewriter

Converts queries to canonical form
 flatten views
« subqueries into fewer query blocks
* e.g., by replacing w/ joins
Not our focus

Query Parser

Query Rewriter

Query Optimizer

!

T

Plan

Plan Cost

Generator Estimator

V_/
|

Catalog Manager

v

Query Executor

Schema
& Stats

Query Parsing & Optimization Part 4

o
i From BlahB ;
{ Where B.blah=blah |

« “Cost-based” Query Optimizer
* Our focus!
« Optimizes 1 query block at a time
» Select, Project, Join
« GroupBy/Agg
* Order By (if top-most block)

« Uses catalog stats to find least-“cost”
plan per query block

« Often not truly “optimal”, lots of
heuristic rules and magic

Query Parser

Query Rewriter

!

Query Optimizer

T

Plan Plan Cost
Generator Estimator

Catalog Manager

Query Executor

Schema
& Stats

Query Optimization Overview

* Query block can be converted to relational algebra
* Relational algebra can be represented as exp. tree

- Each operator has implementation choices
« QOperators can also be applied in different orders! w
PAGE NESTED LOOPS

Reserves
SCAN

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid

AND R.bid=100
AND S.rating>5

\

Tc(sname)G(bid=1OO A rating > 5)
(Reserves D Sailors)

Query Optimization: The Components

« Three (mostly) orthogonal concerns:
* Plan space:
« for a given query, what plans are considered?
* larger the plan space, more likely to find a cheaper plan, but harder to search
* Cost estimation:
* how is the cost of a plan estimated?
- want to find the cheapest plan
« Search strategy:
« how do we “search” in the “plan space”?

Yik San Chan
Very nice feature, as better at one won’t worsen the two others

Query Optimization: The Goal

« Optimization goal:
 Ideally: Find the plan with least actual cost = one that runs fastest

* Reality: Find the plan with least estimated cost.
* At the very least, try to avoid really bad actual plans!

Today

« We will get a feel for the plan space
« Explore one simple example query

Plan Space

* To generate a space of candidate plans, we need to think about
how to rewrite relational algebra expressions into other ones

* Therefore, need a set of equivalence rules

Relational Algebra Equivalences: Selections

Selections:

* Gcin..non(R) = 0c1(...(0cn(R))...) (cascade)
* Intuitively, RHS says check c, first on all tuples, then c,_; etc.

* 6c1(0c2(R)) = oc2(cc:1(R)) (commute)

Relational Algebra Equivalences: Projections

« Selections:
Scin...aen(R) = Sei(...(0en(R)).) (cascade)
6c1(0c2(R)) = oca(cc1(R)) (commute)
* Projections:
* Tai(...(R)...) = mas(...(ma1, ., an-1(R))...) (cascade)

« Essentially, allows partial projection earlier in the expression
* Aslong as we’re keeping a4 (and everything else we need outside) we’re OK

Q: Are there any commute rules for projections?

Relational Algebra Equivalences: Cartesian Product

« Selections:
* Gcin...ren(R) = 0c1(...(0en(R)). .) (cascade)
* 0c1(oc2(R)) = oca(cc1(R)) (commute)
* Projections:
* Tai(..-(R)...) = Mat(-. (a1, ..., an-1(R))-..) (cascade)
» Cartesian Product
c Rx(SxT)=(RxS)xT (associative)
* RxS=SxR (commutative)
« Recall that the ordering of attributes doesn’t matter

Are Joins Associative and Commutative?

» After all, just Cartesian Products with Selections
* You can think of them as associative and commutative...

* ...But beware of join turning into cross-product!
« Consider R(a,z), S(a,b), T(b,y)
« Attempt 1: Does this work? Why?
* (S™gpp T) Mga-pa RES M gporp (T Mgapa R)
* notlegal!! Join on a not permissible
« Attempt 2: Does this work? Why?
* (S™gptpT) MWgampa RES Mgp gy (TxR)
« notthe same!! No condition for a being same
« Attempt 3: Does this work?
* (S™MgprpT) ¥ga-ra R=S Mgpthasara (T xR)

Join ordering, again
- Similarly, note that some join orders have cross products, some don’t
« Equivalent for the query above:

() (<) SELECT *
I, FROM R, S, T
(R (D A WHERE R.a = S.a
D GO AND S.b = T.b;
(R el Sa=Ra S) X SbTb T R X S.a=R.a (S X S.b=T.b T)

(5 (<)
DI, (x YD

IO D D

R X S.a=R.a (T X S.b=T.b S) (R X -D X S.a=R.a A S.b=T.b S

Plan Space

* To generate a space of candidate plans, we need to think about
how to rewrite relational algebra expressions into other ones

* Therefore, need a set of equivalence rules — done

* Next, will discuss a set of heuristics that are used to restrict
attention to plans that are mostly better:
« we’ve already seen one of these in the relational alg lectures.

Some Common Heuristics: Selections

» Selection cascade and pushdown
* Apply selections as soon as you have the relevant columns
+ EXx:
* Tlsname (O(bid=100 A rating > 5) (R€SEIVES DX Reserves.sid=Sailors.sid Oailors))
* Tsname (Obid=100 (R€SEIVes) X geserves.sid=Sailors.sid O rating > 5 (Sailors))
* Why is this an improvement?
« Selection is essentially free, joins are expensive

» Take care of selections early -- side effect is that the intermediate
inputs to joins are smaller

Some Common Heuristics: Projections

Projection cascade and pushdown
« Keep only the columns you need to evaluate downstream operators
* Reserves(sid, bid, day), Sailors (sid, rating, sname)
* EX:
* TlsnameO (bid=100 A rating > 5) (Reserves > Reserves.sid=Sailors.sid Sailors)
Q: How might we cascade and push projections and selections down?

* Tlsname (Tsid(Obid=100 (RESEIVEs)) P Reserves sid=Sailors.sid Tlsname,sid (o rating > 5 (Sailors)))
Other rewritings exist! (reorder selection and projection)

Some Common Heuristics

* Avoid Cartesian products
* Given a choice, do theta-joins rather than cross-products
* Consider R(a,b), S(b,c), T(c,d)
e Favor(Rx S)x Tover(RxT) xS

» Case where this doesn’t quite improve things:
« ifRxTissmall (e.g., R&T are very small and S is relatively large)
- Still, it’s a good enough heuristic that we will use it

Plan Space

* To generate a space of candidate plans, we need to think about
how to rewrite relational algebra expressions into other ones

* Therefore, need a set of equivalence rules — done

* Next, will discuss a set of heuristics that are used to restrict
attention to plans that are mostly better — done

- Both of these were logical equivalences, will also quickly discuss
physical equivalences, next.

Physical Equivalences

 Base table access
* Heap scan
* Index scan (if available on referenced columns)

* Equijoins
* Block (Chunk) Nested Loop: simple, exploits extra memory
* Index Nested Loop: often good if 1 rel small and the other indexed properly
« Sort-Merge Join: good with small memory, equal-size tables
« Grace/Hybrid Hash Join: even better than sort with 1 small table

« Non-Equijoins
* Block (Chunk) Nested Loop

Schema for Examples

Sailors (sid: integer, sname: text, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: date, rname: text)

* Reserves:
« Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
» Assume there are 100 boats (each equally likely)
« Sailors:
« Each tuple is 50 bytes long, 80 tuples per page, 500 pages.
« Assume there are 10 different ratings (each equally likely)

« Assume we have B = 5 pages to use for joins

* Remember: just counting I0s

Motivating Example: Plan 1

Here’s a reasonable query plan:

On-the-fly
On-the-fly
On the-fly

Sld sid
PAGE NESTED LOOPS

Reserves
SCAN

SELECT S.sname

FROM Reserves R, Sailors S
WHERE R.sid=S.sid

AND R.bid=100

AND S.rating>5

Reserves:
Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
Assume there are 100 boats (each equally likely)

Sailors:
Each tuple is 50 bytes long, 80 tuples per page, 500 pages.

Assume there are 10 different ratings (each equally likely)

Assume we have B = 5 pages to use for joins

Motivating Example: Plan 1 Cost

On-the-fly
On-the-fly
On the-fly

Sld sid
PAGE NESTED LOOPS

Reserves
SCAN

Let’s estimate the cost:
Scan Sailors (500 IOs)

For each page of Sailors,
Scan Reserves (1000 10s)

Total: 500 + 500*1000
« 500,500 IOs

Reserves:
Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
Assume there are 100 boats (each equally likely)

Sailors:
Each tuple is 50 bytes long, 80 tuples per page, 500 pages.

Assume there are 10 different ratings (each equally likely)

Assume we have B = 5 pages to use for joins

Motivating Example: Plan 1 Cost Analysis

On-the-fly

On-the-fly

On the-fly

Sld sid
PAGE NESTED LOOPS

Reserves
SCAN

Cost: 500+500*1000 I/Os

By no means the worst plan!

Misses several opportunities:
» selections could be ‘pushed’ down
* no use of indexes

Goal of optimization:
* Find faster plans that compute the same answer.

Reserves:
. Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
Assume there are 100 boats (each equally likely)
Sailors:
. Each tuple is 50 bytes long, 80 tuples per page, 500 pages.
Assume there are 10 different ratings (each equally likely)

Assume we have B = 5 pages to use for joins

Selection Pushdown

On-the-fly
On-the-fly
Grating >5
A
On the-fly

Dqsid=sid

PAGE NESTED LOOPS

Reserves
SCAN

Sld sid
PAGE NESTED LOOPS
Reserves
SCAN

500,500 1Os

On-the-fly

On-the-fly

On the-fly

Sld sid
PAGE NESTED LOOPS

Reserves
SCAN

500,500 1Os

Selection Pushdown, cont

Gbld 100

5|d sid
PAGE NESTED LOOPS
Gratlng >5

Sailors Reserves
SCAN SCAN

Cost?

Query Plan 2 Cost

« Let’s estimate the cost:
« Scan Sailors (500 10s)

* For each pageful of high-rated Sailors,
Scan Reserves (1000 10s)

-+ Total: 500 + ?77*1000

« Remember: 10 ratings, all equally likely

« Total: 500 + 2501000

i

Dqsid:sid
PAGE NESTED LOOPS
cSrating >5
A

A
Sailors
SCAN

Reserves
SCAN

Reserves:
Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
Assume there are 100 boats (each equally likely)

Sailors:
Each tuple is 50 bytes long, 80 tuples per page, 500 pages.

Assume there are 10 different ratings (each equally likely)

Assume we have B = 5 pages to use for joins

Decision?

On-the-fly
On-the-fly
On the-fly

Sld sid
PAGE NESTED LOOPS

Reserves
SCAN

500,500 1Os

GbidleO
5|d sid
PAGE NESTED LOOPS

Sailors Reserves
SCAN SCAN

250,500 IOs

More Selection Pushdown

Olid-100
Dqsid:sid
PAGE NESTED LOOPS
A

Sailors
SCAN

Ohbid=100
Dqsid:sid
PAGE NESTED LOOPS

A
Sailors Reserves
SCAN SCAN

250,500 IOs

Reserves
SCAN

More Selection Pushdown, cont

GbidleO @
A
5|d sid
PAGE NESTED LOOPS

Sailors Reserves
SCAN SCAN

250,500 IOs

5|d sid
PAGE NESTED LOOPS

cyratmg >5
Sailors Reserves
SCAN SCAN

Cost???

Obid=100

Query Plan 3 Cost Analysis

Let’s estimate the cost: P>l sigsia
¢ Scan SallorS (500 |OS) PAGE NESTED LOOPS

* For each pageful of high-rated Sailors,
Read through Reserves tuples that match O rating 5 O hide100

o . *(?7?77?
Total: 500 + 250%(??7) @ @

* For each scan of Reserves, we apply filter on tuples
on the fly

- Problem: this doesn’t actually save any IOs -to =
determlne the Reserves tuples that matCh’ we end . Each tuple is 40 bytes long, 100 tuples per page, 1000
up scanning Reserves the same # of times. o pages.

Assume there are 100 boats (each equally likely)
Sailors:
Each tuple is 50 bytes long, 80 tuples per page, 500

« Total: 500 + 250*1000! ~ pages

Assume there are 10 different ratings (each equally likely)

Assume we have B = 5 pages to use for joins

More Selection Pushdown Analysis

inner loop of a nested loop join
doesn’t save I/0s! Essentially
equivalent to having the
selection above.

Dqsid=sid
PAGE NESTED LOOPS
cirating >5
A
Csrating >5

A
Sailors Reserves
Sailors Reserves SCAN SCAN
SCAN SCAN

250,500 IOs 250,500 IOs

A

Dqsid=sid

PAGE NESTED LOOPS

Olid-100

Yik San Chan

Decision 2

A

Dqsidzsid

PAGE NESTED LOOPS

Ohid=100

Dqsid=sid
PAGE NESTED LOOPS
C$rating >5
A
Csrating >5

A
Sailors Reserves
Sailors Reserves SCAN SCAN
SCAN SCAN

250,500 1Os 250,500 1Os

Olid-100

So far, we'’ve tried

« Basic page nested loops (500,500)
« Selection pushdown on left (250,500)
* More selection pushdown on right (250,500)

* Next up, join ordering

Next up: Join Ordering

D qsid=sid
PAGE NESTED LOOPS

cYrating >5 CYbid=100
A

D qsid=sid
PAGE NESTED LOOPS

cyrating >5 cSbid=100
A

A A
Sailors Reserves Sailors Reserves
SCAN SCAN SCAN SCAN

250,500 IOs

Join Ordering, cont

Dqsidzsid Dqsid=sid
PAGE NESTED LOOPS PAGE NESTED LOOPS
cyrating >5 cSbid=100

Olbid=100 cFrating >5
A A A
Sailors Reserves Reserves Sailors
SCAN SCAN SCAN SCAN

250,500 IOs

Query Plan 4 Cost

« Let’s estimate the cost:
« Scan Reserves (1000 10s)

» For each pageful of Reserves for bid 100, .Gbid:wo G ratings 5
Scan Sailors (500 IOs)

. Total: 1000 +222*500 D

« Uniformly distributed across 100 boat values
« Total: 1000 +10*500

Dqsid=sid

PAGE NESTED LOOPS

Reserves:
. Each tuple is 40 bytes long, 100 tuples per page, 1000

pages.
Assume there are 100 boats (each equally likely)

Sailors:
Each tuple is 50 bytes long, 80 tuples per page, 500
pages.
Assume there are 10 different ratings (each equally
likely)

Assume we have B = 5 pages to use for joins

Decision 3

D qsid=sid
PAGE NESTED LOOPS

Grating >5 CSbid=100
A

A
Sailors Reserves
SCAN SCAN

250,500 10s

Dqsid=sid
PAGE NESTED LOOPS
Gbid=100 Grating >5
A
Reserves Sailors
SCAN SCAN

6000 IOs

So far, we'’ve tried

« Basic page nested loops (500,500)

« Selection pushdown on left (250,500)

* More selection pushdown on right (250,500)
« Join ordering (6000)

* Next up, materialization ...

Materializing Inner Loops

If you recall,
selection pushdown
on the right doesn’t
help because it is
done on the fly.

PAGE NESTED LOOPS What |f we

Gbidzloo cYrating> 5 matel’lahze the
result after the

A
Car> > selection?

Dqsid:sid
PAGE NESTED LOOPS
GbileOO Grating >5
A
Reserves Sailors
SCAN SCAN

6000 IOs

A

Materializing Inner Loops, cont

Dqsid:sid
PAGE NESTED LOOPS
Obid-100 cSrating >5
A
Reserves Sailors
SCAN SCAN

6000 IOs

Nsid:
PAGE NESTED

sid
LOOPS
Ohid=100 ¢

A

Reserves
SCAN

cSrating >5

A
Sailors
SCAN

Cost???

Plan 5 Cost Analysis

 Let’s estimate the cost:

« Scan Reserves (1000 10s)
« Scan Sailors (500 |0s) Obid-100 @

 Materialize Temp table T1 (??? IOs) ®

D jsid:
PAGE NESTED

Grating >5
SCAN

» For each pageful of Reserves for bid 100, 5|
Scan T1 (227 IOs) D

« Total: 1000 + 500 + ?7?7? + 10*???
« 1000 + 500+ 250 + (10 * 250) © Resenes

Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
Assume there are 100 boats (each equally likely)

Sailors:
Each tuple is 50 bytes long, 80 tuples per page, 500 pages.
Assume there are 10 different ratings (each equally likely)

Assume we have B = 5 pages to use for joins

Materializing Inner Loops, cont.

6000 IOs 4250 10s

Join Ordering Again

Let’s try flipping

@ w the join order
again with
D> materialization
sid= .
PAGE NESTED PAGE NESTED LOOPS tI’ICk

sid

LOOPS
Oid=100 ¢ @
A A A

Reserves
Reserves O ating> 5 @ Orating > 5
SCAN y Y

Sailors
SCAN

4250 10s

Join Ordering Again, Cont

D jsid:
PAGE NESTED

sid
LOOPS
Obid=100 ¢

A

Reserves
SCAN

4250 10s

cyrating >5

SCAN

A
SCAN

Cost???

Let’s try flipping
the join order
again with
materialization
trick

Plan 6 Cost Analysis

* Let’s estimate the cost:

« Scan Sailors (500 10s)

« Scan Reserves (1000 IOs)

* Materialize Temp table T1 (??7? 10s)

* For each pageful of high-rated Sailors,
Scan T1 (7?77 10s)

. Total: 500 + 1000 + 2272 + 250*???
. 500 + 1000 +10 +(250 *10)

5|d sid
PAGE NESTED LOOPS

id=100

2

Reserves
SCAN

O

Reserves:
. Each tuple is 40 bytes long, 100 tuples per page, 1000
pages.
. Assume there are 100 boats (each equally likely)
Sailors:
. Each tuple is 50 bytes long, 80 tuples per page, 500 pages.
Assume there are 10 different ratings (each equally likely)

Assume we have B = 5 pages to use for joins

Decision 4

Dqsid=sid
S|d sid PAGE NESTED LOOPS
PAGE NESTED LOOPS
mat
A 7'y
Reserves Gbid:lOO
SCAN i 4

Sailors Reserves
SCAN SCAN

4010 IOs
4250 10s

Ohid=100

FY.
v

ng > 5

F
A

!

So far, we'’ve tried

« Basic page nested loops (500,500)

« Selection pushdown on left (250,500)

* More selection pushdown on right (250,500)

« Join ordering (6000)

* Materializing inner loop (4250)

» Join ordering again with materialization (4010)

* Next up, sort merge ...

Join Algorithm

What if we
change the join
algorithm?

i

A T y
A y
Reserves Reserves
SCAN SCAN

4010 IOs

Join Algorithm, cont.

What if we
change the join
algorithm?

A
A
Reserves Reserves
SCAN SCAN

4010 IOs

!

Query Plan 7 Cost Analysis

« With 5 buffers, cost of plan:
« Scan Reserves (1000)
* Scan Sailors (500)

Dqsid=sid
SORT MERGE JOIN

i i , Obid=100
* Sort high-rated sailors (?77) d

Note: pass 0 doesn’t do read I/O, just gets input from select. T

« Sort reservations for boat 100 (777?) ©

Note: pass 0 doesn’t do read /O, just gets input from select.
« How many passes for each sort?

. R :
¢ Merge (1 O+250) f— 260 e-sewesggggstuple is 40 bytes long, 100 tuples per page, 1000
g A h 100 b h Ily likel
L] Total: . Sallors: ssume there are oats (each equally likely)

Each tuple is 50 bytes long, 80 tuples per page, 500 pages.
Assume there are 10 different ratings (each equally likely)

Assume we have B = 5 pages to use for joins

Query Plan 7 Cost Analysis Part 2

« With 5 buffers, cost of plan:
« Scan Reserves (1000)
« Scan Sailors (500)

 Sort

« 2 passes for reserves _
pass 0 = 10 to write, pass 1 = 2*10 to read/write

* 4 passes for sailors

pass 0 = 250 to write, pass 1,2,3 = 2*250 to
read/write

* Merge (10+250) = 260
Scan both (1000 + 500) + sort reserves(10 + 2*10) +

sort sailors (250 + 3*2*250) + merge (10+250) = 3540 -

Dqsid=sid
SORT MERGE JOIN

Ohid=100

A
Reserves
SCAN

Reserves:

Each tuple is 40 bytes long, 100 tuples per page, 1000
pages.
. Assume there are 100 boats (each equally likely)
Sailors:
. Each tuple is 50 bytes long, 80 tuples per page, 500
pages.
Assume there are 10 different ratings (each equally likely)

Assume we have B = 5 pages to use for joins

Query Plan 7 Cost Analysis Part 2

« With 5 buffers, cost of plan:
« Scan Reserves (1000)
« Scan Sailors (500)

« Sort

« 2 passes for reserves
ass 0 = 10 to write (2 runs of 5 each); pass 1 =2*10
o read/write (one representative from 2 runs)

* 4 passes for sailors
ass 0 = 250 to write (50 runs of 5 each); pass 1
gmerglng to give 50/4=13 runs of 4 * 5 size each); pass
(merging to give 13/4=4 runs of 4 * 4 * 5 size each);
?ass 3 (éneg%mg to give one run of 250 in total) pass
2,3 = 2*250 t0 read/write

* Merge (10+250) = 260

Scan both (1000 + 500) + sort reserves(10 + 2*10) + sort
sailors (250 + 3*2*250) + merge (10+250) = 3540

Dqsid=sid
SORT MERGE JOIN

Ohid=100

A
Reserves
SCAN

Reserves:

Each tuple is 40 bytes long, 100 tuples per page, 1000
pages.
. Assume there are 100 boats (each equally likely)
Sailors:
. Each tuple is 50 bytes long, 80 tuples per page, 500
pages.
Assume there are 10 different ratings (each equally likely)

Assume we have B = 5 pages to use for joins

Decision 5

Sld sid
PAGE NESTED LOOPS

D<]sid=sid
SORT MERGE JOIN
Sailors Gbid:lOO
@ O bid=100 ra‘Tt'”g 22 Y
Reserves Reserves
SCAN SCAN

4010 IOs 3540 10s

cyratlng >5 mat

O

»
'Ur

!

So far, we'’ve tried

« Basic page nested loops (500,500)

« Selection pushdown on left (250,500)

* More selection pushdown on right (250,500)

« Join ordering (6000)

* Materializing inner loop (4250)

» Join ordering again with materialization (4010)
« Sort-merge join (3540)

* Next up, block nested ...

Join Algorithm Again, Again

Returning to our
best (so far)
page nested
loops plan
again...

PAGE NESTED LOOPS BLOCK NESTED LOOP
CYrating >5 @
Y A A
Sailors Sailors
SCAN Ohbid=100 SCAN Obid=100
A A
Reserves Reserves
SCAN SCAN
4010 10s Cost?2?
(And Sort-Merge at 3540 1Os) o

)
v

Query 8 Cost Analysis

« With 5 buffers, cost of plan:

BLOCK NESTED LOOP
« Scan Sailors (500)
¢ Scan Reserves (1000) Gratj[‘P > @
A

* Write Temp T1 (10) @ Ohbid=100

* For each blockful of high-rated sailors

. Loop on T1 (??7? *10) @
* What is the chunk size? How many chunks (???) will we have? A

« 3 pages; ceil(250/3)

v

. . Reserves:
° TOtal . . Each tuple is 40 bytes long, 100 tuples per page,

1000 pages.
Assume there are 100 boats (each equally likely)

« Scan both(500 + 1000) + write out T1(10) + BNLJ (ceil(250/3) *105%™ Lo tuple is 50 bytes long, 80 tuples per page,

500 pages.
Assume there are 10 different ratings (each

=500 + 1000 +10 +(84 *10) = 2350 equally likely)

Decision 6

@ Nsidzsid
BLOCK NESTED LOOP
Dqsid=sid
SORT MERGE JOIN G rating > 5 mat
A A

Gb'd=100 Sailors

A
A
Reserves Reserves
SCAN SCAN

3540 10s 2350 I0s

)
v

So far, we'’ve tried

« Basic page nested loops (500,500)

« Selection pushdown on left (250,500)

* More selection pushdown on right (250,500)

« Join ordering (6000)

* Materializing inner loop (4250)

» Join ordering again with materialization (4010)
« Sort-merge join (3540)

* Block nested loops (2350)

* Next up, projection cascade

Projection Cascade & Pushdown

2350 IOs

Projection Cascade & Pushdown, cont

2350 IOs

Projection Cascade & Pushdown, cont

Super small!
Single page — can

Dqsi =si H 13 ”
make this the “chunk
sid=sid
c5rating> 5

on the left
_A @D Cs,d 1 page [4 out of 40 bytes

A A

Sailors 1 O pageS
Reserves SCAN cSbid 100

Reserves

2350 IOs s

v

O

i

With Join Reordering, no Mat

So we’ll try reordering
the join again.
Dqsid:sid

o sidesid BLOCK NESTED LOOP We’” alSO Skip On the
Tlai, sname @ materialization for this
@ 1 (convince yourself
Obid=100

cyrating >5
A

Sailors
SCAN

at
@D {D later that it doesn't

‘ help)

L)

A -
Sailors

SCAN cSbidzloo
Reserves y
SCAN

Reserves

2350 IOs o

:
g

!

With Join Reordering, no Mat cont

So we’ll try reordering
the join again.

Dqsid=sid

BLOCK NESTED LOOP

Dqsid:sid

BLOCK NESTED LOOP

We'll also skip on the
materialization for this

Tc .
TCsig sid, sname .
Orating > 5 @ % T (convince yourself
A] :
QD later that it doesn’t
Sailors Obid=100 rating > 5
S O bid=100 4 help)

A
SCAN
Reserves SCAN
SCAN

:

e

2350 IOs

Query Plan 9 Cost Analysis

« With 5 buffers, cost of plan:
« Scan Reserves (1000)

* For each blockful of sids that rented boat 100

. (recall Reserve tuple is 40 bytes,
assume sid is 4 bytes)

« 10 pages down to 1 page
. Loop on Sailors (??7? * 500) = 1 * 500

 Total: 1500

Dqsid:sid

BLOCK NESTED LOOP

;

TESId

A

A
Obid=100 @mt"@

Sailors
SCAN

Reserves
SCAN

)

'

Reserves:
. Each tuple is 40 bytes long, 100 tuples per page, 1000
pages.
. Assume there are 100 boats (each equally likely)
Sailors:
. Each tuple is 50 bytes long, 80 tuples per page, 500 pages.
Assume there are 10 different ratings (each equally likely)

Assume we have B = 5 pages to use for joins

With Join Reordering, no Mat, cont.

2350 IOs 1500 IOs <= Can’t do much better w/o indexes! Why?

So far, we'’ve tried

- Basic page nested loops (500,500)

« Selection pushdown on left (250,500)

* More selection pushdown on right (250,500)

« Join ordering (6000)

* Materializing inner loop (4250)

- Join ordering again with materialization (4010)

« Sort-merge join (3540)

* Block nested loops (2350)

* Projection cascade, plus reordering again (1500)

* Next up, indexes

How About Indexes?

Indexes:
 Reserves.bid clustered
e Sailors.sid unclustered

Assume indexes fit in memory

Reserves: bid

Vi

bid = 100 (on 10 pages)

Sailors

i

@
A

Dqsid=sid

INDEX NEST LOOP

Sailors
INDEX SCAN

Reserves
INDEX SCAN

Reserves:

Each tuple is 40 bytes long, 100 tuples per page,
1000 pages.

. Assume there are 100 boats (each equally likely)

Sailors:

. Each tuple is 50 bytes long, 80 tuples per page, 500
pages.
Assume there are 10 different ratings (each equally
likely)

Assume we have B = 5 pages to use for joins

Index Cost Analysis

In our query plan, note:

@
A

Dqsid=sid

INDEX NEST LOOP

Sailors
INDEX SCAN

No projection pushdown to left for Tlggme
* Projecting out unnecessary fields from

outer of Index NL doesn’t make an 1/O difference (still doing things
per tuple)

Reserves
INDEX SCAN

No selection pushdown to right for G 4ting > 5

* Does not affect Sailors.sid index lookup
With clustered index on bid of Reserves, we access how
many pages of Reserves?:

-+ 100,000/100 = 1000 tuples on 1000/100 = 10 pages. Reserves:

Each tuple is 40 bytes long, 100 tuples per page, 1000

1010 IOs

: PR : pages.
JOIn COIUmn Sld IS a key fOI’ Sallors' . Assume there are 100 boats (each equally likely)
; ; ; ; Sailors:
* At most one matching tuple using unclustered index on sid ! Each tuple is 50 bytes long, 80 tuples per page, 500 pages.

Assume there are 10 different ratings (each equally likely)

Assume we have B = 5 pages to use for joins

Index Cost Analysis Part 2

Dqsid=sid

INDEX NEST LOOP

Sailors
INDEX SCAN

« With clustered index on bid of Reserves, we access how
many pages of Reserves?:

- 100,000/100 = 1000 tuples on 1000/100 = 10 pages.

« for each Reserves tuple (1000 such tuples)
get matching Sailors tuple (1 10)

Reserves
INDEX SCAN

10+ 1000*1

1010 IOs
« Cost: Selection of Reserves tuples (10 I/0Os); then, for
each, must get matching Sailors tuple (1000); total
1010 I/Os. . Reserves:
. Each tuple is 40 bytes long, 100 tuples per page, 1000
Satlors izgjie there are 100 boats (each equally likely)

Each tuple is 50 bytes long, 80 tuples per page, 500
pages.
Assume there are 10 different ratings (each equally likely)

Assume we have B = 5 pages to use for joins

The Entire Story

« Basic page nested loops (500,500)

« Selection pushdown on left (250,500)

* More selection pushdown on right (250,500)

« Join ordering (6000)

* Materializing inner loop (4250)

» Join ordering again with materialization (4010)

« Sort-merge join (3540)

* Block nested loops (2350)

* Projection cascade, plus reordering again (1500)
* Index nested loops (1010)

- Still only a subset of the possible plans for this query!!!

Summing up

* There are lots of plans
« Even for a relatively simple query

* Engineers often think they can pick good ones
* E.g. MapReduce API was based on that assumption
« So was the COBOL API of 1970’s!

* Not so clear that’s truel!
« Manual query planning can be tedious, technical
* Machines are better at enumerating options than people

« We will see soon how optimizers make simplifying
assumptions to examine a reasonable set of plans

