
Relational Query
Optimization I:
The Plan Space

Alvin Cheung
Aditya Parameswaran

R&G 15

Architecture of a DBMS

• Completed

• You are here
• Completed
• Completed
• Completed
• Completed

Database
Management

System

Database

Query Parsing
& Optimization

Relational Operators

Files and Index Management

Buffer Management

Disk Space Management

SQL Client

Query Optimization is Magic
• The bridge between a declarative domain-specific language…

• “What” you want as an answer
• … and custom imperative computer programs

• “How” to compute the answer

• A lot of smart people and a lot of time has been spent on this
problem!

• Reminiscent of many cutting-edge “AI” problems
• Similar tricks: optimization + heuristic pruning
• Analogous to AI-based Software Synthesis

Invented in 1979 by Pat Selinger et al.
• We’ll focus on “System R” (“Selinger”) optimizers

• From IBM Research in Almaden
• “Cascades” optimizer is the other common one

• Later, with notable differences, but similar big picture

Access Path Selection
in a Relational Database Management System

P. Griffiths Selinger
M. M. Astrahan

D. D. Chamberlin

‘, : It. A. Lorie
.: ' T. G. Price
4:

IBM Research Division, San Jose, California 95193

ABSTRACT: In a high level query and data
manipulation language such as SQL, requests
are stated non-procedurally, without
reference to access paths. This paper
describes how System R chooses access paths
for both simple (single relation) and
complex queries (such as joins), given a
user specification of desired data as a
boolean expression of predicates. System R
is an experimental database management
system developed to carry out research on
the relational model of data. System R was
designed and built by members of the IBM
San Jose Research'Laboratory.

1. Introduction

System' R is an experimental database
management system based on the relational
model of data which has been under develop-
ment at the IBM San Jose Research Laborato-
ry since 1975 Cl>. The software was

. developed as a research vehicle in rela-
tional database, and is not generally
available outside the IBM Research Divi-
sion.

This paper assumes familiarity with
relational data model terminology as
described in Codd <7> and Date <a>. The
user interface in System R is the unified
query, data definition, and manipulation
language SQL <5>. Statements in SQL can be
issued both from an on-line casual-user-or-
iented terminal interface and from program-
ming languages such as PL/I and COBOL.

In System R a user need not know how
the tuples are physically stored and what
access paths are available (e.g. which
columns have indexes). SQL statements do
not require the user to specify anything
about the access path to be used for tuple

Permission to copy without fee all or part of this
material is granted provided that the copies are
not made or distributed for direct couunercial ad-
vantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is
given that copying is by permission of the Associa-
tion for Computing Machinery. To copy otherwise,
or to republish, requires a fee end/or specific
permission.

01979 ACM 0-89791-001-X/79/0500-0023 $00.75

retrieval. Nor does a user specify in what
order joins are to be performed. The
System R optimizer .chooses both join order
and an access path for each table in the
SQL statement. Of the many possible
choices, the optimizer chooses the one
which minimizes "total access cost" for
performing the entire statement.

This paper will address the issues of
access path selection for queries.
Retrieval for data manipulation (UPDATE,
DELETE) is treated similarly. Section 2
will describe the place of the optimizer in
the processing of a SQL statement, and
section 3 will describe the storage compo-
nent access paths that are available on a
single physically stored table. In section
4 the optimizer cost formulas are intro-
duced for single table queries, and section
5 discusses the joining of two or more
tables, and their corresponding costs.
Nested queries (queries in predicates) are
covered in section 6.

2. processi.Bg & B.B u statement

A SQL statement is subjected to four
phases of processing. Depending on 'the
origin and contents of the statement., these
phases may be separated by arbitrary
intervals. of time. In System RI these
arbitrary time intervals are transparent to
the system components which process a SQL
statement. These mechanisms and a descrip-
tion of the processing of SQL statements
from both programs and terminals are
further discussed in <2>. Only an overview
of those processing steps that are relevant
to access path selection will be discussed
here.

The four phases of statement processing
are-parsing, optimization. code generation.
and execution. Each SQL statement is sent
to , the parser. where it is checked for
correct syntax. A guery block is repre-
sented by a SELECT list, a FROM list, and a
WHERE tree, containing, respectively the
list of .items to be retrieved, the table(s)
referenced, and the boolean combination of
simple predicates specified by the user. A

single SQL statement may have many query
blocks because a predicate may have one

23

Query Parsing & Optimization: Query Lifecycle

Plan Cost
Estimator

Query Executor

Query Rewriter

Catalog Manager

Select *
From Blah B
Where B.blah = blah

Query Optimizer

Plan
Generator

Schema
& Stats

Query Parser

Yik San Chan
AST

Yik San Chan
Get statistics to help the computation

Query Parsing & Optimization Part 2
• Query parser

• Checks correctness, authorization
• Generates a parse tree
• Straightfoward
• Not our focus

Plan	Cost	
Estimator

Query	Executor

Query	Rewriter

Catalog	Manager

Select	*
From	Blah	B
Where	B.blah=	blah

Query	Optimizer

Plan	
Generator

Schema
&	Stats

Query	Parser

Query Parsing & Optimization Part 3
• Query rewriter

• Converts queries to canonical form
• flatten views
• subqueries into fewer query blocks

• e.g., by replacing w/ joins
• Not our focus

Plan	Cost	
Estimator

Query	Executor

Query	Rewriter

Catalog	Manager

Select	*
From	Blah	B
Where	B.blah=	blah

Query	Optimizer

Plan	
Generator

Schema
&	Stats

Query	Parser

Query Parsing & Optimization Part 4
• “Cost-based” Query Optimizer

• Our focus!
• Optimizes 1 query block at a time

• Select, Project, Join
• GroupBy/Agg
• Order By (if top-most block)

• Uses catalog stats to find least-“cost”
plan per query block

• Often not truly “optimal”, lots of
heuristic rules and magic

Plan	Cost	
Estimator

Query	Executor

Query	Rewriter

Catalog	Manager

Select	*
From	Blah	B
Where	B.blah=	blah

Query	Optimizer

Plan	
Generator

Schema
&	Stats

Query	Parser

Query Optimization Overview
• Query block can be converted to relational algebra
• Relational algebra can be represented as exp. tree
• Each operator has implementation choices
• Operators can also be applied in different orders!

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid
AND R.bid=100
AND S.rating>5

p(sname)s(bid=100 Ù rating > 5)
(Reserves ⨝ Sailors)

psname

sbid=100

srating > 5

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

Reserves
SCAN

Query Optimization: The Components
• Three (mostly) orthogonal concerns:

• Plan space:
• for a given query, what plans are considered?
• larger the plan space, more likely to find a cheaper plan, but harder to search

• Cost estimation:
• how is the cost of a plan estimated?
• want to find the cheapest plan

• Search strategy:
• how do we “search” in the “plan space”?

Yik San Chan
Very nice feature, as better at one won’t worsen the two others

Query Optimization: The Goal
• Optimization goal:

• Ideally: Find the plan with least actual cost = one that runs fastest
• Reality: Find the plan with least estimated cost.

• At the very least, try to avoid really bad actual plans!

Today
• We will get a feel for the plan space
• Explore one simple example query

Plan Space
• To generate a space of candidate plans, we need to think about

how to rewrite relational algebra expressions into other ones
• Therefore, need a set of equivalence rules

Relational Algebra Equivalences: Selections
• Selections:

• sc1Ù…Ùcn(R) º sc1(…(scn(R))…) (cascade)
• Intuitively, RHS says check cn first on all tuples, then cn-1 etc.

• sc1(sc2(R)) º sc2(sc1(R)) (commute)

Relational Algebra Equivalences: Projections

• Selections:
• sc1Ù…Ùcn(R) º sc1(…(scn(R))…) (cascade)
• sc1(sc2(R)) º sc2(sc1(R)) (commute)

• Projections:
• pa1(…(R)…) º pa1(…(pa1, …, an-1(R))…) (cascade)

• Essentially, allows partial projection earlier in the expression
• As long as we’re keeping a1 (and everything else we need outside) we’re OK

• Q: Are there any commute rules for projections?

Relational Algebra Equivalences: Cartesian Product

• Selections:
• sc1Ù…Ùcn(R) º sc1(…(scn(R))…) (cascade)
• sc1(sc2(R)) º sc2(sc1(R)) (commute)

• Projections:
• pa1(…(R)…) º pa1(…(pa1, …, an-1(R))…) (cascade)

• Cartesian Product
• R ´ (S ´ T) º (R ´ S) ´ T (associative)
• R ´ S º S ´ R (commutative)

• Recall that the ordering of attributes doesn’t matter

Are Joins Associative and Commutative?
• After all, just Cartesian Products with Selections
• You can think of them as associative and commutative…
• …But beware of join turning into cross-product!

• Consider R(a,z), S(a,b), T(b,y)
• Attempt 1: Does this work? Why?

• (S ⋈S.b=T.b T) ⋈S.a=R.a R ≢ S ⋈ S.b=T.b (T ⋈ S.a=R.a R)
• not legal!! Join on a not permissible

• Attempt 2: Does this work? Why?
• (S ⋈ S.b=T.b T) ⋈ S.a=R.a R ≢ S ⋈ S.b=T.b (T ´ R)

• not the same!! No condition for a being same
• Attempt 3: Does this work?

• (S ⋈ S.b=T.b T) ⋈ S.a=R.a R ≡ S ⋈ S.b=T.b Ù S.a=R.a (T ´ R)

Join ordering, again
• Similarly, note that some join orders have cross products, some don’t
• Equivalent for the query above:

SELECT *
FROM R, S, T
WHERE R.a = S.a
AND S.b = T.b;

⨝
S´

R T

⨝

T⨝
R S

⨝

R ⨝
TS

⨝

R ⨝
ST

(R ⋈ S.a=R.a S) ⋈ S.b=T.b T R ⋈ S.a=R.a (S ⋈ S.b=T.b T)

R ⋈ S.a=R.a (T ⋈ S.b=T.b S) (R ´ T) ⋈ S.a=R.a ∧ S.b=T.b S

Plan Space
• To generate a space of candidate plans, we need to think about

how to rewrite relational algebra expressions into other ones
• Therefore, need a set of equivalence rules – done

• Next, will discuss a set of heuristics that are used to restrict
attention to plans that are mostly better:
• we’ve already seen one of these in the relational alg lectures.

Some Common Heuristics: Selections
• Selection cascade and pushdown

• Apply selections as soon as you have the relevant columns
• Ex:

• psname (s(bid=100 Ù rating > 5) (Reserves ⨝ Reserves.sid=Sailors.sid Sailors))
• psname (sbid=100 (Reserves) ⨝ Reserves.sid=Sailors.sid s rating > 5 (Sailors))

• Why is this an improvement?
• Selection is essentially free, joins are expensive
• Take care of selections early -- side effect is that the intermediate

inputs to joins are smaller

Some Common Heuristics: Projections
• Projection cascade and pushdown

• Keep only the columns you need to evaluate downstream operators
• Reserves(sid, bid, day), Sailors (sid, rating, sname)
• Ex:

• psnames(bid=100 Ù rating > 5) (Reserves ⨝ Reserves.sid=Sailors.sid Sailors)
• Q: How might we cascade and push projections and selections down?
• psname (psid(sbid=100 (Reserves)) ⨝ Reserves.sid=Sailors.sid psname,sid (s rating > 5 (Sailors)))
• Other rewritings exist! (reorder selection and projection)

Some Common Heuristics
• Avoid Cartesian products

• Given a choice, do theta-joins rather than cross-products
• Consider R(a,b), S(b,c), T(c,d)
• Favor (R ⋈ S) ⋈ T over (R ´ T) ⋈ S
• Case where this doesn’t quite improve things:

• if R x T is small (e.g., R & T are very small and S is relatively large)
• Still, it’s a good enough heuristic that we will use it

⨝

S´

R T

⨝

T⨝
R S

Plan Space
• To generate a space of candidate plans, we need to think about

how to rewrite relational algebra expressions into other ones
• Therefore, need a set of equivalence rules – done
• Next, will discuss a set of heuristics that are used to restrict

attention to plans that are mostly better – done
• Both of these were logical equivalences, will also quickly discuss

physical equivalences, next.

Physical Equivalences
• Base table access

• Heap scan
• Index scan (if available on referenced columns)

• Equijoins
• Block (Chunk) Nested Loop: simple, exploits extra memory
• Index Nested Loop: often good if 1 rel small and the other indexed properly
• Sort-Merge Join: good with small memory, equal-size tables
• Grace/Hybrid Hash Join: even better than sort with 1 small table

• Non-Equijoins
• Block (Chunk) Nested Loop

Schema for Examples
Sailors (sid: integer, sname: text, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: date, rname: text)

• Reserves:
• Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
• Assume there are 100 boats (each equally likely)

• Sailors:
• Each tuple is 50 bytes long, 80 tuples per page, 500 pages.
• Assume there are 10 different ratings (each equally likely)

• Assume we have B = 5 pages to use for joins

• Remember: just counting IOs

Motivating Example: Plan 1
• Here’s a reasonable query plan:

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid
AND R.bid=100
AND S.rating>5

psname

sbid=100

srating > 5

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

Reserves
SCAN

On-the-fly

On-the-fly

On-the-fly

• Reserves:
• Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
• Assume there are 100 boats (each equally likely)

• Sailors:
• Each tuple is 50 bytes long, 80 tuples per page, 500 pages.
• Assume there are 10 different ratings (each equally likely)

• Assume we have B = 5 pages to use for joins

Motivating Example: Plan 1 Cost

• Let’s estimate the cost:
• Scan Sailors (500 IOs)
• For each page of Sailors,

Scan Reserves (1000 IOs)
• Total: 500 + 500*1000

• 500,500 IOs

psname

sbid=100

srating > 5

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

Reserves
SCAN

On-the-fly

On-the-fly

On-the-fly

• Reserves:
• Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
• Assume there are 100 boats (each equally likely)

• Sailors:
• Each tuple is 50 bytes long, 80 tuples per page, 500 pages.
• Assume there are 10 different ratings (each equally likely)

• Assume we have B = 5 pages to use for joins

Motivating Example: Plan 1 Cost Analysis
• Cost: 500+500*1000 I/Os
• By no means the worst plan!
• Misses several opportunities:

• selections could be ‘pushed’ down
• no use of indexes

• Goal of optimization:
• Find faster plans that compute the same answer.

psname

sbid=100

srating > 5

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

Reserves
SCAN

On-the-fly

On-the-fly

On-the-fly

• Reserves:
• Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
• Assume there are 100 boats (each equally likely)

• Sailors:
• Each tuple is 50 bytes long, 80 tuples per page, 500 pages.
• Assume there are 10 different ratings (each equally likely)

• Assume we have B = 5 pages to use for joins

Selection Pushdown

500,500 IOs

psname

sbid=100

srating > 5

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

Reserves
SCAN

psname

sbid=100

srating > 5

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

Reserves
SCAN

On-the-fly

On-the-fly

On-the-fly

Selection Pushdown, cont

500,500 IOs Cost?

psname

sbid=100

srating > 5

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

Reserves
SCAN

On-the-fly

On-the-fly

On-the-fly

psname

sbid=100

srating > 5

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

Reserves
SCAN

Query Plan 2 Cost
• Let’s estimate the cost:
• Scan Sailors (500 IOs)
• For each pageful of high-rated Sailors,

Scan Reserves (1000 IOs)

• Total: 500 + ???*1000

• Remember: 10 ratings, all equally likely

• Total: 500 + 250*1000

psname

sbid=100

srating > 5

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

Reserves
SCAN

• Reserves:
• Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
• Assume there are 100 boats (each equally likely)

• Sailors:
• Each tuple is 50 bytes long, 80 tuples per page, 500 pages.
• Assume there are 10 different ratings (each equally likely)

• Assume we have B = 5 pages to use for joins

Decision?

500,500 IOs 250,500 IOs

psname

sbid=100

srating > 5

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

Reserves
SCAN

On-the-fly

On-the-fly

On-the-fly

psname

sbid=100

srating > 5

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

Reserves
SCAN

More Selection Pushdown

250,500 IOs

psname

sbid=100

srating > 5

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

Reserves
SCAN

psname

sbid=100

srating > 5

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

Reserves
SCAN

More Selection Pushdown, cont

Cost???250,500 IOs

psname

sbid=100

srating > 5

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

Reserves
SCAN

psname

sbid=100srating > 5

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

Reserves
SCAN

Query Plan 3 Cost Analysis

Let’s estimate the cost:
• Scan Sailors (500 IOs)
• For each pageful of high-rated Sailors,

Read through Reserves tuples that match

• Total: 500 + 250*(???)

• For each scan of Reserves, we apply filter on tuples
on the fly

• Problem: this doesn’t actually save any IOs – to
determine the Reserves tuples that match, we end
up scanning Reserves the same # of times.

• Total: 500 + 250*1000!

psname

sbid=100srating > 5

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

Reserves
SCAN

• Reserves:
• Each tuple is 40 bytes long, 100 tuples per page, 1000

pages.
• Assume there are 100 boats (each equally likely)

• Sailors:
• Each tuple is 50 bytes long, 80 tuples per page, 500

pages.
• Assume there are 10 different ratings (each equally likely)

• Assume we have B = 5 pages to use for joins

More Selection Pushdown Analysis Pushing a selection into the
inner loop of a nested loop join
doesn’t save I/Os! Essentially
equivalent to having the
selection above.

srating > 5

psname

sbid=100

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

Reserves
SCAN

250,500 IOs 250,500 IOs

psname

sbid=100srating > 5

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

Reserves
SCAN

Yik San Chan

Decision 2

srating > 5

psname

sbid=100

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

Reserves
SCAN

250,500 IOs 250,500 IOs

psname

sbid=100srating > 5

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

Reserves
SCAN

So far, we’ve tried
• Basic page nested loops (500,500)
• Selection pushdown on left (250,500)
• More selection pushdown on right (250,500)

• Next up, join ordering

Next up: Join Ordering

250,500 IOs

psname

sbid=100srating > 5

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

Reserves
SCAN

psname

sbid=100srating > 5

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

Reserves
SCAN

Join Ordering, cont

250,500 IOs

psname

sbid=100 srating > 5

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

Reserves
SCAN

psname

sbid=100srating > 5

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

Reserves
SCAN

Query Plan 4 Cost
• Let’s estimate the cost:
• Scan Reserves (1000 IOs)
• For each pageful of Reserves for bid 100,

Scan Sailors (500 IOs)
• Total: 1000 +???*500
• Uniformly distributed across 100 boat values
• Total: 1000 +10*500

psname

sbid=100 srating > 5

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

Reserves
SCAN

• Reserves:
• Each tuple is 40 bytes long, 100 tuples per page, 1000

pages.
• Assume there are 100 boats (each equally likely)

• Sailors:
• Each tuple is 50 bytes long, 80 tuples per page, 500

pages.
• Assume there are 10 different ratings (each equally

likely)

• Assume we have B = 5 pages to use for joins

Decision 3

6000 IOs

psname

sbid=100 srating > 5

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

Reserves
SCAN

250,500 IOs

psname

sbid=100srating > 5

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

Reserves
SCAN

So far, we’ve tried
• Basic page nested loops (500,500)
• Selection pushdown on left (250,500)
• More selection pushdown on right (250,500)
• Join ordering (6000)

• Next up, materialization …

Materializing Inner Loops

6000 IOs

srating > 5

Reserves
SCAN

psname

sbid=100

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

psname

sbid=100 srating > 5

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

Reserves
SCAN

If you recall,
selection pushdown
on the right doesn’t
help because it is
done on the fly.

What if we
materialize the
result after the
selection?

Materializing Inner Loops, cont

6000 IOs

mat

Cost???

psname

sbid=100 srating > 5

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

Reserves
SCAN

srating > 5Reserves
SCAN

psname

sbid=100

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

Plan 5 Cost Analysis
• Let’s estimate the cost:
• Scan Reserves (1000 IOs)
• Scan Sailors (500 IOs)
• Materialize Temp table T1 (??? IOs)
• For each pageful of Reserves for bid 100,

Scan T1 (??? IOs)
• Total: 1000 + 500 + ??? + 10*???
• 1000 + 500+ 250 + (10 * 250)

mat

srating > 5Reserves
SCAN

psname

sbid=100

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

• Reserves:
• Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
• Assume there are 100 boats (each equally likely)

• Sailors:
• Each tuple is 50 bytes long, 80 tuples per page, 500 pages.
• Assume there are 10 different ratings (each equally likely)

• Assume we have B = 5 pages to use for joins

Materializing Inner Loops, cont.

psname

sbid=100 srating > 5

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

Reserves
SCAN

6000 IOs 4250 IOs

mat

srating > 5Reserves
SCAN

psname

sbid=100

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

Join Ordering Again

srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

psname

⨝sid=sid
PAGE NESTED LOOPS

mat

4250 IOs

mat

srating > 5Reserves
SCAN

psname

sbid=100

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

Let’s try flipping
the join order
again with
materialization
trick

Join Ordering Again, Cont

srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

psname

⨝sid=sid
PAGE NESTED LOOPS

mat

Cost???
4250 IOs

mat

srating > 5Reserves
SCAN

psname

sbid=100

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

Let’s try flipping
the join order
again with
materialization
trick

Plan 6 Cost Analysis
• Let’s estimate the cost:
• Scan Sailors (500 IOs)
• Scan Reserves (1000 IOs)
• Materialize Temp table T1 (??? IOs)
• For each pageful of high-rated Sailors,

Scan T1 (??? IOs)
• Total: 500 + 1000 + ??? + 250*???
• 500 + 1000 +10 +(250 *10)

srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

psname

⨝sid=sid
PAGE NESTED LOOPS

mat

• Reserves:
• Each tuple is 40 bytes long, 100 tuples per page, 1000

pages.
• Assume there are 100 boats (each equally likely)

• Sailors:
• Each tuple is 50 bytes long, 80 tuples per page, 500 pages.
• Assume there are 10 different ratings (each equally likely)

• Assume we have B = 5 pages to use for joins

Decision 4

4250 IOs

srating > 5
Reserves

SCAN

psname

sbid=100

⨝sid=sid
PAGE NESTED LOOPS

Sailors
SCAN

mat

4010 IOs

srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

psname

⨝sid=sid
PAGE NESTED LOOPS

mat

So far, we’ve tried
• Basic page nested loops (500,500)
• Selection pushdown on left (250,500)
• More selection pushdown on right (250,500)
• Join ordering (6000)
• Materializing inner loop (4250)
• Join ordering again with materialization (4010)

• Next up, sort merge …

Join Algorithm

4010 IOs

srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

psname

⨝sid=sid
PAGE NESTED LOOPS

mat srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

psname

⨝sid=sid
PAGE NESTED LOOPS

mat

What if we
change the join
algorithm?

Join Algorithm, cont.

Cost???
4010 IOs

srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

psname

⨝sid=sid
PAGE NESTED LOOPS

mat

srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

psname

⨝sid=sid
SORT MERGE JOIN

What if we
change the join
algorithm?

Query Plan 7 Cost Analysis

• With 5 buffers, cost of plan:
• Scan Reserves (1000)
• Scan Sailors (500)

• Sort high-rated sailors (???)
Note: pass 0 doesn’t do read I/O, just gets input from select.

• Sort reservations for boat 100 (???)
Note: pass 0 doesn’t do read I/O, just gets input from select.

• How many passes for each sort?

• Merge (10+250) = 260
• Total:

srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

psname

⨝sid=sid
SORT MERGE JOIN

• Reserves:
• Each tuple is 40 bytes long, 100 tuples per page, 1000

pages.
• Assume there are 100 boats (each equally likely)

• Sailors:
• Each tuple is 50 bytes long, 80 tuples per page, 500 pages.
• Assume there are 10 different ratings (each equally likely)

• Assume we have B = 5 pages to use for joins

Query Plan 7 Cost Analysis Part 2

• With 5 buffers, cost of plan:
• Scan Reserves (1000)
• Scan Sailors (500)

• Sort

• 2 passes for reserves
pass 0 = 10 to write, pass 1 = 2*10 to read/write

• 4 passes for sailors
pass 0 = 250 to write, pass 1,2,3 = 2*250 to
read/write

• Merge (10+250) = 260
Scan both (1000 + 500) + sort reserves(10 + 2*10) +
sort sailors (250 + 3*2*250) + merge (10+250) = 3540

srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

psname

⨝sid=sid
SORT MERGE JOIN

• Reserves:
• Each tuple is 40 bytes long, 100 tuples per page, 1000

pages.
• Assume there are 100 boats (each equally likely)

• Sailors:
• Each tuple is 50 bytes long, 80 tuples per page, 500

pages.
• Assume there are 10 different ratings (each equally likely)

• Assume we have B = 5 pages to use for joins

Query Plan 7 Cost Analysis Part 2

• With 5 buffers, cost of plan:
• Scan Reserves (1000)
• Scan Sailors (500)

• Sort

• 2 passes for reserves
pass 0 = 10 to write (2 runs of 5 each); pass 1 = 2*10
to read/write (one representative from 2 runs)

• 4 passes for sailors
pass 0 = 250 to write (50 runs of 5 each); pass 1
(merging to give 50/4=13 runs of 4 * 5 size each); pass
2 (merging to give 13/4=4 runs of 4 * 4 * 5 size each);
pass 3 (merging to give one run of 250 in total) pass
1,2,3 = 2*250 to read/write

• Merge (10+250) = 260
Scan both (1000 + 500) + sort reserves(10 + 2*10) + sort
sailors (250 + 3*2*250) + merge (10+250) = 3540

srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

psname

⨝sid=sid
SORT MERGE JOIN

• Reserves:
• Each tuple is 40 bytes long, 100 tuples per page, 1000

pages.
• Assume there are 100 boats (each equally likely)

• Sailors:
• Each tuple is 50 bytes long, 80 tuples per page, 500

pages.
• Assume there are 10 different ratings (each equally likely)

• Assume we have B = 5 pages to use for joins

Decision 5

srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

psname

⨝sid=sid
PAGE NESTED LOOPS

mat

4010 IOs 3540 IOs

srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

psname

⨝sid=sid
SORT MERGE JOIN

So far, we’ve tried
• Basic page nested loops (500,500)
• Selection pushdown on left (250,500)
• More selection pushdown on right (250,500)
• Join ordering (6000)
• Materializing inner loop (4250)
• Join ordering again with materialization (4010)
• Sort-merge join (3540)

• Next up, block nested …

Join Algorithm Again, Again

srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

psname

⨝sid=sid
BLOCK NESTED LOOP

matsrating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

psname

⨝sid=sid
PAGE NESTED LOOPS

mat

4010 IOs
(And Sort-Merge at 3540 IOs) Cost???

Returning to our
best (so far)
page nested
loops plan
again…

Query 8 Cost Analysis

• With 5 buffers, cost of plan:

• Scan Sailors (500)
• Scan Reserves (1000)

• Write Temp T1 (10)
• For each blockful of high-rated sailors
• Loop on T1 (??? * 10)

• What is the chunk size? How many chunks (???) will we have?
• 3 pages; ceil(250/3)

• Total:

• Scan both(500 + 1000) + write out T1(10) + BNLJ (ceil(250/3) *10)

= 500 + 1000 +10 +(84 *10) = 2350

srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

psname

⨝sid=sid
BLOCK NESTED LOOP

mat

• Reserves:
• Each tuple is 40 bytes long, 100 tuples per page,

1000 pages.
• Assume there are 100 boats (each equally likely)

• Sailors:
• Each tuple is 50 bytes long, 80 tuples per page,

500 pages.
• Assume there are 10 different ratings (each

equally likely)

• Assume we have B = 5 pages to use for joins

Decision 6

srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

psname

⨝sid=sid
BLOCK NESTED LOOP

mat

2350 IOs3540 IOs

srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

psname

⨝sid=sid
SORT MERGE JOIN

So far, we’ve tried
• Basic page nested loops (500,500)
• Selection pushdown on left (250,500)
• More selection pushdown on right (250,500)
• Join ordering (6000)
• Materializing inner loop (4250)
• Join ordering again with materialization (4010)
• Sort-merge join (3540)
• Block nested loops (2350)

• Next up, projection cascade

Projection Cascade & Pushdown

srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

psname

⨝sid=sid
BLOCK NESTED LOOP

mat

2350 IOs

Projection Cascade & Pushdown, cont

srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

psname

⨝sid=sid
BLOCK NESTED LOOP

mat

2350 IOs

srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

⨝sid=sid
BLOCK NESTED LOOP

mat

psname

Projection Cascade & Pushdown, cont

srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

psname

⨝sid=sid
BLOCK NESTED LOOP

mat

2350 IOs

srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

⨝sid=sid
BLOCK NESTED LOOP

mat

psid

psid, sname

psname

10 pages

1 page [4 out of 40 bytes]

Super small!
Single page – can
make this the “chunk”
on the left

With Join Reordering, no Mat

srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

psname

⨝sid=sid
BLOCK NESTED LOOP

mat

2350 IOs

srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

⨝sid=sid
BLOCK NESTED LOOP

mat

psid

psid, sname

psname So we’ll try reordering
the join again.

We’ll also skip on the
materialization for this
(convince yourself
later that it doesn’t
help)

With Join Reordering, no Mat cont

srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

psname

⨝sid=sid
BLOCK NESTED LOOP

mat

2350 IOs

srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

⨝sid=sid
BLOCK NESTED LOOP

psid
psid, sname

psname So we’ll try reordering
the join again.

We’ll also skip on the
materialization for this
(convince yourself
later that it doesn’t
help)

Query Plan 9 Cost Analysis
• With 5 buffers, cost of plan:
• Scan Reserves (1000)

• For each blockful of sids that rented boat 100
• (recall Reserve tuple is 40 bytes,

assume sid is 4 bytes)
• 10 pages down to 1 page

• Loop on Sailors (??? * 500) = 1 * 500

• Total: 1500

srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

⨝sid=sid
BLOCK NESTED LOOP

psid
psid, sname

psname

• Reserves:
• Each tuple is 40 bytes long, 100 tuples per page, 1000

pages.
• Assume there are 100 boats (each equally likely)

• Sailors:
• Each tuple is 50 bytes long, 80 tuples per page, 500 pages.
• Assume there are 10 different ratings (each equally likely)

• Assume we have B = 5 pages to use for joins

With Join Reordering, no Mat, cont.

1500 IOs <= Can’t do much better w/o indexes! Why?

srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

psname

⨝sid=sid
BLOCK NESTED LOOP

mat

2350 IOs

psname

srating > 5

Sailors
SCAN

Reserves
SCAN

sbid=100

⨝sid=sid
BLOCK NESTED LOOP

psid
psid, sname

psname

So far, we’ve tried
• Basic page nested loops (500,500)
• Selection pushdown on left (250,500)
• More selection pushdown on right (250,500)
• Join ordering (6000)
• Materializing inner loop (4250)
• Join ordering again with materialization (4010)
• Sort-merge join (3540)
• Block nested loops (2350)
• Projection cascade, plus reordering again (1500)

• Next up, indexes

How About Indexes?
• Indexes:

• Reserves.bid clustered
• Sailors.sid unclustered

• Assume indexes fit in memory

Reserves: bid

. . .

Sailors

bid = 100 (on 10 pages)

srating > 5

psname

Reserves
INDEX SCAN

Sailors
INDEX SCANsbid=100

⨝sid=sid
INDEX NEST LOOP

• Reserves:
• Each tuple is 40 bytes long, 100 tuples per page,

1000 pages.
• Assume there are 100 boats (each equally likely)

• Sailors:
• Each tuple is 50 bytes long, 80 tuples per page, 500

pages.
• Assume there are 10 different ratings (each equally

likely)

• Assume we have B = 5 pages to use for joins

Index Cost Analysis
In our query plan, note:

• No projection pushdown to left for psname
• Projecting out unnecessary fields from

outer of Index NL doesn’t make an I/O difference (still doing things
per tuple)

• No selection pushdown to right for srating > 5
• Does not affect Sailors.sid index lookup

• With clustered index on bid of Reserves, we access how
many pages of Reserves?:
• 100,000/100 = 1000 tuples on 1000/100 = 10 pages.

• Join column sid is a key for Sailors.
• At most one matching tuple using unclustered index on sid

1010 IOs

srating > 5

psname

Reserves
INDEX SCAN

Sailors
INDEX SCANsbid=100

⨝sid=sid
INDEX NEST LOOP

• Reserves:
• Each tuple is 40 bytes long, 100 tuples per page, 1000

pages.
• Assume there are 100 boats (each equally likely)

• Sailors:
• Each tuple is 50 bytes long, 80 tuples per page, 500 pages.
• Assume there are 10 different ratings (each equally likely)

• Assume we have B = 5 pages to use for joins

Index Cost Analysis Part 2
• With clustered index on bid of Reserves, we access how

many pages of Reserves?:
• 100,000/100 = 1000 tuples on 1000/100 = 10 pages.

• for each Reserves tuple (1000 such tuples)
get matching Sailors tuple (1 IO)

• 10 + 1000*1

• Cost: Selection of Reserves tuples (10 I/Os); then, for
each, must get matching Sailors tuple (1000); total
1010 I/Os.

1010 IOs

srating > 5

psname

Reserves
INDEX SCAN

Sailors
INDEX SCANsbid=100

⨝sid=sid
INDEX NEST LOOP

• Reserves:
• Each tuple is 40 bytes long, 100 tuples per page, 1000

pages.
• Assume there are 100 boats (each equally likely)

• Sailors:
• Each tuple is 50 bytes long, 80 tuples per page, 500

pages.
• Assume there are 10 different ratings (each equally likely)

• Assume we have B = 5 pages to use for joins

The Entire Story
• Basic page nested loops (500,500)
• Selection pushdown on left (250,500)
• More selection pushdown on right (250,500)
• Join ordering (6000)
• Materializing inner loop (4250)
• Join ordering again with materialization (4010)
• Sort-merge join (3540)
• Block nested loops (2350)
• Projection cascade, plus reordering again (1500)
• Index nested loops (1010)

• Still only a subset of the possible plans for this query!!!

Summing up
• There are lots of plans

• Even for a relatively simple query

• Engineers often think they can pick good ones
• E.g. MapReduce API was based on that assumption
• So was the COBOL API of 1970’s!

• Not so clear that’s true!
• Manual query planning can be tedious, technical
• Machines are better at enumerating options than people
• We will see soon how optimizers make simplifying

assumptions to examine a reasonable set of plans

