Relational Query Optimization II:
Costing and Searching

Alvin Cheung
Aditya Parameswaran

Reading: R & G Chapter 15

Berkeley

cs186

: imization?
What is needed for query optimization” Berkeley

* Given: A closed set of operators
* Relational ops (table in, table out)
* Physical implementations (of those ops and a few more)

1. Plan space
* Based on relational equivalences, different implementations

2. Cost Estimation based on
* Cost formulas
* Size estimation, in turn based on
Catalog information on base tables
Selectivity (Reduction Factor) estimation

3. A search algorithm
« To sift through the plan space and find lowest cost option!

Reminder ; Berkeley l

- We’ll focus on “System R” (“Selinger”) optimizers
* Many of the details have been refined over time
« We'll see some refinements today
* This remains an area of ongoing research!

A Naive Query Optimizer rerkeley I

» Given an input query Q:
1. Enumerate all possible plans for Q
« Too many plans to consider!
2. Estimate the cost of each plan
* Hard to estimate cost accurately given caches etc

3. Pick plan with the lowest cost
« How? Keep all plans in memory?

Query plan space

Select o year, Berkeley
- cs186

sum (case |

when nation = 'BRAZIL' then volume

else O

end) / sum(volume)

from There about 22 million

(alternative ways of executing
select YEAR (O ORDERDATE) as o year,
L EXTENDEDPRICE * (1 - L DISCOUNT) as volume,
n2.N NAME as nation
from PART, SUPPLIER, LINEITEM, ORDERS, CUSTOMER, NATION nl,
NATION n2, REGION
where
P PARTKEY = L PARTKEY and S SUPPKEY = L SUPPKEY
and L ORDERKEY = O ORDERKEY and O CUSTKEY = C CUSTKEY
and C NATIONKEY = nl.N NATIONKEY and nl.N REGIONKEY = R REGIONKEY

and R NAME = 'AMERICA' and S NATIONKEY = n2.N NATIONKEY
and O ORDERDATE between '1995-01-01' and '1996-12-31"
and P _TYPE = 'ECONOMY ANODIZED STEEL'

and S _ACCTBAL <= constant-1
and L EXTENDEDPRICE <= constant-2
) as all nations

group by o year order by o year Slide from D Dewitt

Big Picture of System R Optimizer merkeley

* Plan Space

« Many plans have the same high cost subtree that can be
pruned

 Heuristics (aka tricks that usually work):
» Consider only left-deep plans
* Avoid Cartesian products
* Don’t optimize the entire query at once
* Cost estimation
* Inexact is fine as long as we can compare plans
- Better estimators have been developed
« Search Algorithm
* Dynamic Programming

Query Optimization rerkeley |

1. Plan Space

2. Cost Estimation

3. Search Algorithm

Query Blocks: Units of Optimization merkeley

* Break query into query blocks
« Optimize one block at a time
* Uncorrelated nested blocks computed once

 (Correlated nested blocks are like function calls
- But sometimes can be “decorrelated”
* Recall relational algebra lecture

SELECT S.sname
FROM Sailors S
WHERE S.age IN

Outer block

(SELECT MAX (SZ2.age) Nested block
FROM Sailors S2
GROUP BY SZ2.rating)

Query Blocks: Units of Optimization Pt 2 merkeley

* For each block, the plans considered are:

* All relevant access methods, for
each relation in FROM clause. /’4\ D
* All left-deep join trees . ©

* right branch always a base table A B
 consider all join orders and join methods

SELECT S.sname
FROM Sailors S
WHERE S.age IN

Outer block

(SELECT MAX (SZ2.age)
FROM Sailors S2
GROUP BY SZ2.rating)

Nested block

Schema for Examples ‘L—Befkgllsgy l

Sailors (sid: integer, sname: text, rating: 1integer,
age: float)
Reserves (sid: 1nteger, bid: integer, day: date,
rname: text)
* Reserves:
- Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
« 100 distinct bids.
« Sailors:
- Each tuple is 50 bytes long,
« 80 tuples per page, 500 pages.
* 10 ratings, 40,000 sids.

“Physical” Properties

cs186

Berkeley

Two common “physical” properties of an output:
« Sort order
« Hash Grouping

Certain operators produce these properties in output
* E.g. Index scan (result is sorted)
- E.g. Sort (result is sorted)
* E.g. Hash (result is grouped)

Certain operators require these properties at input
- E.g. Mergedoin requires sorted input

Certain operators preserve these properties from inputs
« E.g. Mergedoin preserves sort order of inputs
* E.g. Index nested loop join (INLJ) preserves sort order of outer (left) input

Recall: Physically Equivalent Plans rerkeley l

« Same content and same physical properties

Queries Over Multiple Relations rBerkgL%Y l

« A System R heuiristic: only left-deep join trees considered.
* Restricts the search space

» Left-deep trees allow us to generate all fully pipelined plans.
* i.e., intermediate results not written to temporary files.
* Not all left-deep trees are fully pipelined (e.g., SM join).

Plan Space Review Berkeley

* For a SQL query, full plan space:
« All equivalent relational algebra expressions
- Based on the equivalence rules we learned
« All mixes of physical implementations of those algebra expressions

* We might prune this space:
« Selection/Projection pushdown
« Left-deep trees only
* Avoid Cartesian products

- Along the way we may care about physical properties like sorting
« Because downstream ops may depend on them
* And enforcing them later may be expensive

Query Optimization: Cost Estimation merkeley
1. Plan Space

2. Cost Estimation

3. Search Algorithm

Cost Estimation

* For each plan considered, must estimate total cost:

Must estimate cost of each operation in plan tree.
* Depends on input cardinalities.
« We've already discussed this for various operators
* sequential scan, index scan, joins, etc.

Must estimate size of result for each operation in tree!
« Because it determines downstream input cardinalities!
« Use information about the input relations.
* For selections and joins, assume independence of predicates.

; Berkgllsgy l

* In System R, cost is boiled down to a single number consisting of

#1/0 + CPU-factor * #tuples

« Second term estimate the cost of tuple processing

Statistics and Catalogs Berkeley

. Need info on relations and indexes involved.
« Catalogs typically contain at least:

B I

NTuples # of tuples in a table (cardinality)
NPages # of disk pages in a table
Low/High min/max value in a column
Nkeys # of distinct values in a column
IHeight the height of an index

INPages # of disk pages in an index

« Catalogs updated periodically.
Too expensive to do continuously
Lots of approximation anyway, so a little slop here is ok.
* Modern systems do more
« Especially keep more detailed statistical information on data values
* e.g., histograms

Size Estimation and Selectivity rerkeley l

* Max output cardinality = product of input cardinalities

« Selectivity (sel) associated with each term
» reflects the impact of the term in reducing result size.
 selectivity = |output| / |input|
« Book calls selectivity “Reduction Factor” (RF)
* Always between 0 and 1

* Avoid confusion:
« “highly selective” in common English is opposite of a high selectivity value
(loutput|/|input| high!)

SELECT attribute Tist
FROM relation 1list
WHERE terml AND ... AND termk

Result Size Estimation

Result cardinality = Max # tuples * product of all selectivities.

Term col=value (given Nkeys(col) uniqgue values of col)
« sel = 1/NKeys(col)

Term col1=col2 (handy for joins too...)
« sel = 1/MAX(NKeys(col1), NKeys(col2))
- Why MAX?

Term col>value
 sel = (High(col)-value)/(High(col)-Low(col) + 1)

Note, if missing the needed stats, assume 1/10!!!

P(leftEar = rightEar)

100 bunnies
2 distinct LeftEar colors
- {C1,C2}
10 distinct RightEar colors
« {C1,C2,...,C10}
Independent ears
What’s the probability of matching ears?

P(L = R)

= 2 P(Ci’ Ci)

= P(C,4, Cy) + P(C,, C,) + P(Cs, Cj) + ...
=(1/2*1/10) + (1/2*1/10) + (0 * 1/10) + ...
=1/10 = 1/MAX(2,10)

Postgres 10.0: src/include/utils/selfuncs.h

/* default selectivity estimate for equalities such as "A = b" */
#define DEFAULT_EQ_SEL @.005

/* default selectivity estimate for inequalities such as "A < b" */
#define DEFAULT_INEQ_SEL @.3333333333333333

/* default selectivity estimate for range inequalities "A > b AND A < c" */
#define DEFAULT_RANGE_INEQ_SEL 0.005

/* default selectivity estimate for pattern-match operators such as LIKE */
#define DEFAULT_MATCH_SEL @.005

/¥ default number of distinct values in a table */
#define DEFAULT_NUM_DISTINCT 200

/* default selectivity estimate for boolean and null test nodes */
#define DEFAULT_UNK_SEL 0.005
#define DEFAULT_NOT_UNK_SEL (1.0 - DEFAULT_UNK_SEL)

Reduction Factors & Histograms M
* For better estimation, use a histogram |

equiwidth
2 J3 s |1 Js8 |2 |1
Value 0-0.99 1-1.99 2-2.99 3-3.99 4-4.99 5-5.99 6-6.99
equidepth

Value 0-0.99 1-1.99 2-2.99 3-4.05 4.06-4.67 4.68-4.99 5-6.99

Note: 10-bucket equidepth histogram
divides the data into deciles
- akin to quantiles, median, etc.

Computing selectivity with histograms merkeley

100 rows

* Op>o9?

allll

40 60 80 100 120 140

p = # potatoes consumed per yr

Computing selectivity with histograms merkeley

100 rows

* Op>o9?

aallll

40 60 80 100 120 140

p = # potatoes consumed per yr

Computing selectivity with histograms merkeley

100 rows

* Gps5 097 50/100= 50%.

aallll

40 60 80 100 120 140

p = # potatoes consumed per yr

Computing selectivity with histograms merkeley

100 rows

: cSage < 26?

40 60 80 100 120 140 5 15 25 35 45 55
age

p = # potatoes consumed per yr

Computing selectivity with histograms merkeley

100 rows

: cSage < 26?

40 60 80 100 120 140 5 15 25 35 45 55
age

p = # potatoes consumed per yr

Computing selectivity with histograms merkeley

o 100 rows e Uniformity assumption:

Uniform distribution within each bin

N Each vertical slice the same
Gage <26 Hence % of the population of bin [25,30) has age < 26.
10+10+15+10+ (% *5) =46/100 = 46%

alllls

40 60 80 100 120 140 5 15 25 35 45 55
age

p = # potatoes consumed per yr

Selectivity of Conjunction rerkeley l

° 100 roOws Independence assumption:
« Age and potato consumption
are independent

cSp > 99 A age < 26?
50% 46%

40 60 80 100 120 140 5 15 25 35 45 55
age

« Selectivity: 50% x 46% = 23%

p = # potatoes consumed per yr

Selectivity of Disjunction e

° 1 OO rOWsS * Answer tuples satisfy one or both predicates
By independence assumption:
« Satisfy the first predicate: 50%

?
c7p>99vage<26' _ .
« Satisfy the second predicate: 46%

50% 46%
« Satisfy both: 50% x 46%
 Don’t double-count!
« Selectivity:
— 50% + 46% - (50% x 46%) = 73%
40 60 80 100 120 140 5 15 25 35 45 55

age
p = # potatoes consumed per yr

o - ina”
Selectivity for more complicated queries” merkglgy

* R, 04(S)
» Selectivity of join predicate p is s,
- Selectivity of selection predicate q is s,

* How to think about overall selectivity?

Join Selectivity ﬂ Berkeley (

* Recall algebraic equivalence: R <, S = g (R x S)

* Hence join selectivity is “just” selectivity s,
« Over a big input: |R| x [S]!

- Total rows: s, x |R| x [S]

Selectivity for our earlier query? rerkg}g l

» Recall from algebraic equivalences
R D, 04(S) £ 0,(R x 04(S)) = g,,4(R % S))

* Hence selectivity just s s,
* Applied to |R| x |S|!

- Total rows: s s,|R||S]

Column Equality?

T.p = T.age ??

;. Berkeley l

|dea: scan over all values of p and age, and check when they are equal

ll

L

|

40 60 80 100 120 140

p = # potatoes consumed per yr

5 15 25 35 45

age

55

Column Equality?

T.p = T.age ??

;. Berkeley l

|dea: scan over all values of p and age, and check when they are equal

all

L

|

40 60 80 100 120 140

p = # potatoes consumed per yr

5 15 25 35 45

age

55

Column Equality? rerk‘% l

T.p = T.age ?7?
|ldea: scan over all values of p and age, and check when they are equal

T.p = T.age

=(T.p=40ATage=40)v (T.p=41ATage=41) v (T.p =42 A T.age = 42) ...
=(T.p=40 AT.age =40) + (T.p =41 A T.age = 41) + (T.p = 42 A T.age = 42) ...
=(T.p =40 *T.age =40) + (T.p =41 *T.age = 41) + (T.p = 42 * T.age = 42) ...

Independence assumption

(T.p = 40) (T.age = 40)
_height(binp(40)) _height(binage(40)) Unif i
= Width(binp@0)) * 1~ width(binage(d0)) x n 1 o> HTIPHen

Just add up all the values...

What you need to know

Know how to compute selectivities for basic predicates

| Berkeley

The original Selinger version
The histogram version

Assumption 1: uniform distribution within histogram bins

Within a bin, fraction of range = fraction of count

Assumption 2: independent predicates

Selectivity of AND = product of selectivities of predicates
Selectivity of OR = sum of selectivities of predicates - product of selectivities of predicates
Selectivity of NOT = 1 — selectivity of predicates

Joins are not a special case

Simply compute the selectivity of all predicates
And multiply by the product of the table sizes

Summary: Selectivity Estimation merkeley

* We need a way to estimate the size of the
intermediate tables

* Recall cost of each operator =
I/Os (to bring in input) + CPU-factor * # tuples processed

* Qutput size = input size * operator selectivity

Summary: Selectivity Estimation m
Berkgllsgy

System R Histogram

. — Uniform assumption
 col=value col=value P

- 1/unig-keys(col) bar height containing value

(# values contained in bar) * n

« col1=col2 « col1=col2
* 1/MAX(unig-keys(col1), « Breakdown into
uniq_keys(Colz» (COH =v1 A col2 = V1) V

(colt =v2 Acol2=Vv2)V ...
« col>value
High(col) — value
High(col) - Low(col) + 1

* col>value
sum of bar heights >value

total number of rows

See discussion for floating-point-valued columns!

Summary: Selectivity Estimation merkeley

* In both cases, for more complex predicates:
c pl ApP2

* selectivity(p1) * selectivity(p2)
* plvp2
 selectivity(p1) + selectivity(p2) — (selectivity(p1) * selectivity(p2))

» Lasttermis O if p1 and p2 are non-overlapping
(e.g., age>60 OR age<21)

* not p1 =1 - selectivity(p1)

* This stems from our independence assumption

Query Optimization rBerkeley l

1.Plan Space

2.Cost Estimation

3. Search Algorithm

Enumeration of Alternative Plans rBerkeley I

* There are two main cases:
- Single-table plans (base case)
* Multiple-table plans (induction)

» Single-table queries include selects, projects, and
groupBy/agg:
» Consider each available access path (file scan /
index)
* Choose the one with the least estimated cost

Cost Estimates for Single-Relation Plans merkeley

Index | on primary key matches selection:
* Costis (Height(l) + 1) + 1 for a B+ tree.

4

* Clustered index | matching selection:
* (NPages(l)+NPages(R)) * selectivity (approximately)

* Non-clustered index | matching selection:
* (NPages(l)+NTuples(R)) * selectivity (approximately)

idig

« Sequential scan of file:
* NPages(R).

« Recall: Must also charge for duplicate elimination if required

Example mBerk§£%Y

« If we have an index on rating:

« Cardinality = (1/NKeys(l)) * NTuples(R) = (1/10) * 40000 tuples SELECT S.sid
- Clustered index: (1/NKeys(l)) * (NPages(l)+NPages(R)) FROM Sailors S

= (1/10) * (50+500) = 55 pages are retrieved. WHERE S.rating=8

* Unclustered index: (1/NKeys(l)) * (NPages(l)+NTuples(R))
= (1/10) * (50+40000) = 4005 pages are retrieved.

* (costs on indexes are approximate as we might not need to retrieve all index pages)

 |f we have an index on sid:

« Would have to (roughly) retrieve all tuples/pages. With a clustered index, the cost is ~ 50+500,
with unclustered index, ~ 50+40000.

« Doing a file scan:
* We retrieve all file pages (500).

Left-deep plans differ in
« the order of relations
 the access method for each leaf operator /\
« the join method for each join operator

Enumerated using N passes (if N relations joined):
Pass 1: Find best 1-relation plan for each relation

Pass i: Find best way to join result of an (i -1)-relation plan (as outer) to the i’ th relation. (i
between 2 and N.)

For each subset of relations, retain only:

Cheapest plan overall, plus
Cheapest plan for each interesting order of the tuples.

The Principle of Optimality ﬂ Berl-kelsgy l

Bellman ’57 (slightly adapted to our setting) e

The best overall plan is composed of best decisions on the subplans oSl
* Optimal result has optimal substructure

For example, the best left-deep plan to join tables A, B, C is either:
* (The best plan for joining A, B) > C
» (The best plan for joining A, C) Ix1 B
» (The best plan for joining B, C) bx A

This is great!

* When optimizing a subplan (e.g. A < B), we don’t have to think about how it will be
used later (e.g. when dealing with C)!

* When optimizing a higher-level plan (e.g. A > B >xi C) we can reuse the best results
of subroutines (e.g. A < B)!

Dynamic Programming Algorithm for System R m

* Principle of optimality allows us to build best subplans

“bottom up”

« Pass 1: Find best plans of height 1 (base table accesses), and record them in a table

» Pass 2: Find best plans of height 2 (joins of base tables) by combining plans of height
1, record them in a table

« Pass i: Find best plans of height i by combining plans of height i - 1 with plans of
height 1, record them in a table

* Pass n: Find best plan overall by combining plans of height n-7 with plans of height 1.

The Basic Dynamic Programming Table

Table keyed on 1st column

Subset of tables R:E58E Cost
in FROM clause

{R, S} hashjoin(R,S) 1000

{R, T} mergejoin(R,T) 700

; Berkeley {

A Note on “Interesting Orders” rBerkeley l

* Physical property: Order.
When should we care? When is it “interesting”?

 An intermediate result has an “interesting order” if it is
sorted by anything we can use later in the query (i.e.,
“downstream” op):

 ORDER BY attributes

« GROUP BY attributes

 Join attributes of yet-to-be-added joins
* subsequent merge join might be good

The Dynamic Programming Table

Table keyed on concatenation of first two columns

Subset of tables

Interesting- Best plan Cost

in FROM clause

order columns

{R, S}

<none> hashjoin(R,S) 1000

{R, S}

<R.a, S.b> sortmerge(R,S) 1500

i Berkeley {

< Higher cost, but may lead to
global optimal plan!

TINSTAFL!! @

Enumeration of Plans Berkeley

» First figure out the scans and joins (select-project-join) using dynamic programming

* Avoid Cartesian Products in dynamic programming as follows:
When matching an i -1 way subplan with another table, only consider it if

* There is a join condition between them, or
* All predicates in WHERE have been “used up” in the i -1 way subplan.

« Then handle ORDER BY, GROUP BY, aggregates etc. as a post-processing step
* Via “interestingly ordered” plan if chosen (free!)
* Or via an additional sort’hash operator

* Despite pruning, this System R dynamic programming algorithm is exponential in
#tables.

Exal | |p|e Sailors: Bael
B+ tree indexes on sid cr (Slg%y

SELECT S.sid, COUNT (%) AS number Reserves:

FROM Sailors S, Reserves R, Boats B Clustered B+ tree on bid

WHERE S.sid = R.sid -

AND R.bid = B.bid B+ on sid

AND B.color = “red” Boats

GROUP BY S.sid B+ on color

Pass 1: Best plan(s) for each relation
— Sailors, Reserves: File Scan

— Also B+ tree on Reserves.bid as interesting order (output sorted on bid)
— Also B+ tree on Reserves.sid as interesting order (output sored on sid)
— Also B+ tree on Sailors.sid as interesting order (output sorted on sid)

— Boats: B+ tree on color as interesting order (output sorted on color)

Best plans after pass 1

| Berkeley

Subset of tables Interesting- Best plan
in FROM clause order columns

{Sailors} n/a filescan
{Reserves} n/a Filescan
{Boats} (color) B-tree on color
{Reserves} (bid) B-tree on bid
{Reserves} (sid) B-tree on sid
{Sailors} (sid) B-tree on sid

Pass 2 Berkeley

// for each left-deep logical plan

for each plan P in pass 1
for each FROM table T not in P

// for each physical plan
for each access method Mon T
for each join method
generate P >t M(T)

. File Scan Reserves (outer) with Boats (inner)

. File Scan Reserves (outer) with Sailors (inner)

. Reserves Btree on bid (outer) with Boats (inner)
. Reserves Btree on bid (outer) with Sailors (inner)
. File Scan Sailors (outer) with Boats (inner)

. File Scan Sailors (outer) with Reserves (inner)

. Boats Btree on color with Sailors (inner)

. Boats Btree on color with Reserves (inner)

* Retain cheapest plan for each (pair of relations, order)

Best plans after pass 2

Subset of tables in Interesting-order Best plan

FROM clause columns

{Sailors} n/a filescan

{Reserves} n/a Filescan

{Boats} n/a B-tree on color

{Reserves} (bid) B-tree on bid

{Sailors} (sid) B-tree on sid

{Boats, Reserves} (B.bid) SortMerge(B-tree on

(R.bid) Boats.color, filescan

Reserves)

Etc...

Pass 3 and beyond ﬂ,Berkeley I

* Using Pass 2 plans as outer relations, generate
plans for the next join in the same way as Pass 2

« E.g. {SortMerge(B-tree on Boats.color, filescan Reserves)} (outer) |
with Sailors (B-tree sid) (inner)

* Then, add cost for groupby/aggregate:

* This is the cost to sort the result by sid, unless it has
already been sorted by a previous operator.

* Finally, choose the cheapest plan

Now you understand the optimizer!
Berkgllsgy

« Benefit #1: You could build one.
* And you will in project 3!

 Benefit #2: You can influence one

« People who write non-trivial SQL often get frustrated with the optimizer
It picked a crummy plan!
* It didn’t use the index | built!
- Etc.
« Understanding the optimizer can lead you to:
* Design your DB & Indexes better
* Avoid “weak spots” in your optimizer’s implementation
« Coax your optimizer to do what you want

Relational Query Optimization llI:
Physical Database Design

Alvin Cheung
Aditya Parameswaran

Reading: R & G Chapter 20

Berkeley

cs186

Physical DB Design merkeley

* Query optimizer does what it can to use indices,
clustering etc.

- DataBase Administrator (DBA)
» eXxpected to set up physical design well

* Good DBAs understand
query optimizers very well

MONEY, MONEY

One Key Decision: Indexes ﬂ Be_rkeley l

Which tables

Which field(s) should be the search key?
Multiple indexes?
* Clustering?

Index Selection ﬂ Berkeley (

* A greedy approach:
« Consider most important queries in turn.
« Consider best plan using the current indexes
« See if better plan is possible with an additional index.
* |f so, create it.

« But consider impact on updates!
Indexes can make queries go faster, updates slower.
Require disk space, too.

Issues to Consider in Index Selection ‘ Berkeley l

« Attributes mentioned in a wHere clause are candidates for index search keys.
Range conditions are sensitive to clustering
Exact match conditions don’t require clustering
Or do they????
What if you have a lot of duplicate values? Then just like range search!

« Choose indexes that benefit many queries

 NOTE: only one index can be clustered per relation!
* So choose it wisely!

SELECT E.ename, D.mgr

FROM Emp E, Dept D
Example 1, Part 1 e g onotn.ne § Berkeley [

« B+ tree index on D.dname supports ‘Toy’
selection.

 Given this, index on D.dno isn’t important.

Example 1, Part 2

SELECT E.ename, D.mgr
FROM Emp E, Dept D

WHERE E.dno=D.dno
AND D.dname="'Toy’

- B+ tree index on D.dname supports “Toy’ selection.
* @Given this, index on D.dno isn’t important:

D is already filtered prior to join.

§ Berkgllsgy l

« B+ tree index on E.dno allows us to get matching (inner) Emp tuples for

each selected (outer) Dept tuple.

nename, mgr

A

INDEX SCAN

SELECT E.ename, D.mgr
FROM E E, Dept D
Example 1! Part 3 WHERE EIfIgno=D.flEo ; Berkeley I
AND D.dname='Toy’ _ cs186

« What if WHERE included: “... AND E.age=25" ?

« Could retrieve Emp tuples using index on Emp.age, then join with
Dept tuples satisfying dname selection.

« Comparable performance to strategy that used E.dno index.

« So, if Emp.age index is already created, this query provides much
less motivation for adding an Emp.dno index.

t><1dno=dno

INDEX NEST LOOP.

INDEX SCAN

INDEX SCAN

Index Tuning “Wizards” ﬂ_—Berkeley l

* A number of RDBMSs now have automated index advisors
* Some info in Section 20.6 of the book
« Basic idea:
« Train on a workload of queries
* Possibly based on logging what’s been going on

« Use the optimizer cost metrics to estimate the cost of the workload over
different choices of sets of indexes

« Enormous # of different choices of sets of indexes:
» Heuristics to help this go faster

Tuning Queries and Views

« If a query runs slower than expected:
. check if an index needs to be re-clustered, or if statistics are too old.

« Sometimes, the DBMS may not be executing the plan you had in mind.
« Common areas where optimizers are sub-par:
Selections involving null values (bad selectivity estimates)
Selections involving arithmetic or string expressions (ditto)
Selections involving OR conditions (ditto)
Complex subqueries (lack of flattening)
Failed cost estimation (a common problem in large queries)

Lack of evaluation features like index-only strategies or certain join methods.

« Check the plan that is being used!
« Then adjust the choice of indexes or rewrite the query/view.
« E.g. check via SQL EXPLAIN command
« Many systems rewrite for you under the covers (e.g. DB2)
* Can be confusing and/or helpful!

| Berkeley

Points to Remember gL—Berkgls%Y I

« Want to understand DB design (tables, indexes)?
* Must understand query optimization
» Three parts to optimizing a query:
* Plan space
- E.qg., left-deep plans only
 avoid Cartesian products.
* Prune plans with interesting orders separate from unordered plans
» Cost Estimation
« Qutput cardinality and cost for each plan node.
« Key issues: Statistics, indexes, operator implementations.
« Search Strategy
* we learned “bottom-up” dynamic programming

Points to Remember, cont ﬂ Ber-keley I

« Single-relation queries:
- All access paths considered, cheapest is chosen.

- Issues:
- Selections that match index
- Whether index key has all needed fields
- Whether index provides tuples in an interesting order.

More Points to Remember rBerk§£%Y l

« Multiple-relation (aka Join) queries:
- All single-relation plans are first enumerated.

- Selections/projections considered as early as possible.

- Use best 1-way plans to form 2-way plans. Prune
losers.

- Use best (i-1)-way plans and best 1-way plans to
form i-way plans

- At each level, for each subset of relations, retain:

- Best plan for each interesting order (including no order)

Summary

cs186

Berkeley

» QOptimization is the reason for the lasting power of the
relational system

* Active area of research!
« Smarter statistics (fancy histograms, “sketches”)
* Auto-tuning statistics
- Adaptive runtime re-optimization (e.g. Eddies)
* Multi-query optimization
- Parallel scheduling issues

