
Relational Query Optimization II:
Costing and Searching

Alvin Cheung
Aditya Parameswaran

Reading: R & G Chapter 15

Slide Deck Title

What is needed for query optimization?
• Given: A closed set of operators

• Relational ops (table in, table out)
• Physical implementations (of those ops and a few more)

1. Plan space
• Based on relational equivalences, different implementations

2. Cost Estimation based on
• Cost formulas
• Size estimation, in turn based on

• Catalog information on base tables
• Selectivity (Reduction Factor) estimation

3. A search algorithm
• To sift through the plan space and find lowest cost option!

Slide Deck Title

Reminder

• We’ll focus on “System R” (“Selinger”) optimizers
• Many of the details have been refined over time
• We’ll see some refinements today
• This remains an area of ongoing research!

Slide Deck Title

A Naïve Query Optimizer
• Given an input query Q:

1. Enumerate all possible plans for Q
• Too many plans to consider!

2. Estimate the cost of each plan
• Hard to estimate cost accurately given caches etc

3. Pick plan with the lowest cost
• How? Keep all plans in memory?

Slide Deck Title

Query plan space
Select o_year,
sum(case
when nation = 'BRAZIL' then volume
else 0

end) / sum(volume)
from
(
select YEAR(O_ORDERDATE) as o_year,
L_EXTENDEDPRICE * (1 - L_DISCOUNT) as volume,
n2.N_NAME as nation

from PART, SUPPLIER, LINEITEM, ORDERS, CUSTOMER, NATION n1,
NATION n2, REGION
where

P_PARTKEY = L_PARTKEY and S_SUPPKEY = L_SUPPKEY
and L_ORDERKEY = O_ORDERKEY and O_CUSTKEY = C_CUSTKEY
and C_NATIONKEY = n1.N_NATIONKEY and n1.N_REGIONKEY = R_REGIONKEY
and R_NAME = 'AMERICA‘ and S_NATIONKEY = n2.N_NATIONKEY
and O_ORDERDATE between '1995-01-01' and '1996-12-31'
and P_TYPE = 'ECONOMY ANODIZED STEEL'
and S_ACCTBAL <= constant-1
and L_EXTENDEDPRICE <= constant-2

) as all_nations
group by o_year order by o_year

There about 22 million
alternative ways of executing

this query!

Slide from D Dewitt

Slide Deck Title

Big Picture of System R Optimizer
• Plan Space

• Many plans have the same high cost subtree that can be
pruned

• Heuristics (aka tricks that usually work):
• Consider only left-deep plans
• Avoid Cartesian products
• Don’t optimize the entire query at once

• Cost estimation
• Inexact is fine as long as we can compare plans

• Better estimators have been developed
• Search Algorithm

• Dynamic Programming

Slide Deck Title

Query Optimization
1. Plan Space
2. Cost Estimation

3. Search Algorithm

Slide Deck Title

• Break query into query blocks
• Optimize one block at a time
• Uncorrelated nested blocks computed once
• Correlated nested blocks are like function calls

• But sometimes can be “decorrelated”
• Recall relational algebra lecture

Query Blocks: Units of Optimization

SELECT S.sname
FROM Sailors S
WHERE S.age IN

Nested block

Outer block

(SELECT MAX (S2.age)
FROM Sailors S2

GROUP BY S2.rating)

Slide Deck Title

Query Blocks: Units of Optimization Pt 2
• For each block, the plans considered are:
• All relevant access methods, for

each relation in FROM clause.
• All left-deep join trees

• right branch always a base table
• consider all join orders and join methods

SELECT S.sname
FROM Sailors S
WHERE S.age IN

Nested block

Outer block

BA

C

D

(SELECT MAX (S2.age)
FROM Sailors S2

GROUP BY S2.rating)

Slide Deck Title

Schema for Examples
Sailors (sid: integer, sname: text, rating: integer,

age: float)
Reserves (sid: integer, bid: integer, day: date,

rname: text)
• Reserves:

• Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
• 100 distinct bids.

• Sailors:
• Each tuple is 50 bytes long,
• 80 tuples per page, 500 pages.
• 10 ratings, 40,000 sids.

Slide Deck Title

“Physical” Properties
• Two common “physical” properties of an output:

• Sort order
• Hash Grouping

• Certain operators produce these properties in output
• E.g. Index scan (result is sorted)
• E.g. Sort (result is sorted)
• E.g. Hash (result is grouped)

• Certain operators require these properties at input
• E.g. MergeJoin requires sorted input

• Certain operators preserve these properties from inputs
• E.g. MergeJoin preserves sort order of inputs
• E.g. Index nested loop join (INLJ) preserves sort order of outer (left) input

Slide Deck Title

Recall: Physically Equivalent Plans

• Same content and same physical properties

Sailors
SCAN

Reserves
SCAN

⨝sid=sid
SORT MERGE JOIN

sortsid

Sailors
SCAN

Reserves
SCAN

⨝sid=sid
GRACE HASH JOIN

Slide Deck Title

Queries Over Multiple Relations
• A System R heuristic: only left-deep join trees considered.

• Restricts the search space
• Left-deep trees allow us to generate all fully pipelined plans.

• i.e., intermediate results not written to temporary files.
• Not all left-deep trees are fully pipelined (e.g., SM join).

BA

C

D

BA

C

D

C DBA

Slide Deck Title

Plan Space Review
• For a SQL query, full plan space:

• All equivalent relational algebra expressions
• Based on the equivalence rules we learned

• All mixes of physical implementations of those algebra expressions

• We might prune this space:
• Selection/Projection pushdown
• Left-deep trees only
• Avoid Cartesian products

• Along the way we may care about physical properties like sorting
• Because downstream ops may depend on them
• And enforcing them later may be expensive

Slide Deck Title

Query Optimization: Cost Estimation
1. Plan Space

2. Cost Estimation

3. Search Algorithm

Slide Deck Title

Cost Estimation
• For each plan considered, must estimate total cost:

• Must estimate cost of each operation in plan tree.
• Depends on input cardinalities.
• We’ve already discussed this for various operators

• sequential scan, index scan, joins, etc.

• Must estimate size of result for each operation in tree!
• Because it determines downstream input cardinalities!
• Use information about the input relations.
• For selections and joins, assume independence of predicates.

• In System R, cost is boiled down to a single number consisting of
#I/O + CPU-factor * #tuples
• Second term estimate the cost of tuple processing

Slide Deck Title

Statistics and Catalogs
• Need info on relations and indexes involved.
• Catalogs typically contain at least:

• Catalogs updated periodically.
• Too expensive to do continuously
• Lots of approximation anyway, so a little slop here is ok.

• Modern systems do more
• Especially keep more detailed statistical information on data values

• e.g., histograms

Statistic Meaning
NTuples # of tuples in a table (cardinality)
NPages # of disk pages in a table
Low/High min/max value in a column

Nkeys # of distinct values in a column
IHeight the height of an index
INPages # of disk pages in an index

Slide Deck Title

Size Estimation and Selectivity
• Max output cardinality = product of input cardinalities

• Selectivity (sel) associated with each term
• reflects the impact of the term in reducing result size.
• selectivity = |output| / |input|
• Book calls selectivity “Reduction Factor” (RF)
• Always between 0 and 1

• Avoid confusion:
• “highly selective” in common English is opposite of a high selectivity value

(|output|/|input| high!)
SELECT attribute list

FROM relation list
WHERE term1 AND ... AND termk

Slide Deck Title

Result Size Estimation

• Result cardinality = Max # tuples * product of all selectivities.

• Term col=value (given Nkeys(col) unique values of col)
• sel = 1/NKeys(col)

• Term col1=col2 (handy for joins too…)
• sel = 1/MAX(NKeys(col1), NKeys(col2))
• Why MAX?

• Term col>value
• sel = (High(col)-value)/(High(col)-Low(col) + 1)

• Note, if missing the needed stats, assume 1/10!!!

Slide Deck Title

P(leftEar = rightEar)
• 100 bunnies
• 2 distinct LeftEar colors

• {C1, C2}
• 10 distinct RightEar colors

• {C1, C2, …, C10}
• Independent ears
• What’s the probability of matching ears?

P(L = R)
= !i P(Ci, Ci)
= P(C1, C1) + P(C2, C2) + P(C3, C3) + …
= (1/2 * 1/10) + (1/2 * 1/10) + (0 * 1/10) + …
= 1/10 = 1/MAX(2,10)

Slide Deck Title

Postgres 10.0: src/include/utils/selfuncs.h
/* default selectivity estimate for equalities such as "A = b" */

#define DEFAULT_EQ_SEL 0.005

/* default selectivity estimate for inequalities such as "A < b" */
#define DEFAULT_INEQ_SEL 0.3333333333333333

/* default selectivity estimate for range inequalities "A > b AND A < c" */
#define DEFAULT_RANGE_INEQ_SEL 0.005

/* default selectivity estimate for pattern-match operators such as LIKE */
#define DEFAULT_MATCH_SEL 0.005

/* default number of distinct values in a table */
#define DEFAULT_NUM_DISTINCT 200

/* default selectivity estimate for boolean and null test nodes */
#define DEFAULT_UNK_SEL 0.005
#define DEFAULT_NOT_UNK_SEL (1.0 - DEFAULT_UNK_SEL)

Slide Deck Title

• For better estimation, use a histogram
Reduction Factors & Histograms

equiwidth

equidepth

values 2 3 3 1 8 2 1
Value 0-0.99 1-1.99 2-2.99 3-3.99 4-4.99 5-5.99 6-6.99

values 2 3 3 3 3 2 4
Value 0-0.99 1-1.99 2-2.99 3-4.05 4.06-4.67 4.68-4.99 5-6.99

Note: 10-bucket equidepth histogram
divides the data into deciles

- akin to quantiles, median, etc.

Slide Deck Title

Computing selectivity with histograms

• 100 rows
• sp > 99?

p = # potatoes consumed per yr

count

40 60 80 100 120 1400

5

15

25

10

20

Slide Deck Title

Computing selectivity with histograms

• 100 rows
• sp > 99?

p = # potatoes consumed per yr

count

40 60 80 100 120 1400

5

15

25

10

20

Slide Deck Title

Computing selectivity with histograms

• 100 rows
• sp > 99? 50/100 = 50%.

p = # potatoes consumed per yr

count

40 60 80 100 120 1400

5

15

25

10

20

Slide Deck Title

Computing selectivity with histograms

• 100 rows
• sage < 26?

age
5 15 25 35 45 55

p = # potatoes consumed per yr

count

40 60 80 100 120 1400

5

15

25

10

20

count

0

5

15

25

10

20

Slide Deck Title

Computing selectivity with histograms

• 100 rows
• sage < 26?

age
5 15 25 35 45 55

p = # potatoes consumed per yr

count

40 60 80 100 120 1400

5

15

25

10

20

count

0

5

15

25

10

20

Slide Deck Title

Computing selectivity with histograms

• 100 rows
• sage < 26?

• Uniformity assumption:
Uniform distribution within each bin
Each vertical slice the same
Hence ⅕ of the population of bin [25,30) has age < 26.
10 + 10 + 15 + 10 + (⅕ * 5) = 46/100 = 46%

age
5 15 25 35 45 55

p = # potatoes consumed per yr

count

40 60 80 100 120 140
0

5

15

25

10

20

count

0

5

25

10

20

Slide Deck Title

Selectivity of Conjunction

• 100 rows
• sp > 99 ∧ age < 26?

• Independence assumption:
• Age and potato consumption

are independent

• Selectivity: 50% × 46% = 23%50% 46%

age
5 15 25 35 45 55

p = # potatoes consumed per yr

count

40 60 80 100 120 1400

5

15

25

10

20

count

0

5

25

10

20

Slide Deck Title

Selectivity of Disjunction
• 100 rows
• sp > 99 ∨ age < 26?

• Answer tuples satisfy one or both predicates
• By independence assumption:

• Satisfy the first predicate: 50%
• Satisfy the second predicate: 46%
• Satisfy both: 50% × 46%

• Don’t double-count!

• Selectivity:
50% + 46% - (50% × 46%) = 73%

50% 46%

age
5 15 25 35 45 55

p = # potatoes consumed per yr

count

40 60 80 100 120 1400

5

15

25

10

20

count

0

5

25

10

20

Slide Deck Title

Selectivity for more complicated queries?

• R ⨝p "q(S)
• Selectivity of join predicate p is sp

• Selectivity of selection predicate q is sq

• How to think about overall selectivity?

Slide Deck Title

Join Selectivity
• Recall algebraic equivalence: R ⨝p S ≣ #p(R × S)

• Hence join selectivity is “just” selectivity sp
• Over a big input: |R| × |S|!

• Total rows: sp × |R| × |S|

Slide Deck Title

Selectivity for our earlier query?

• Recall from algebraic equivalences
R ⨝p "q(S) ≣ "p(R × "q(S)) ≣ "p∧q(R × S))

• Hence selectivity just spsq
• Applied to |R| × |S|!

• Total rows: spsq|R||S|

Slide Deck Title

Column Equality?

T.p = T.age ??
Idea: scan over all values of p and age, and check when they are equal

p = # potatoes consumed per yr

count

40 60 80 100 120 1400

5

15

25

10

20

age

5 15 25 35 45 55

count

0

5

15

25

10

20

Slide Deck Title

Column Equality?

T.p = T.age ??
Idea: scan over all values of p and age, and check when they are equal

p = # potatoes consumed per yr

count

40 60 80 100 120 1400

5

15

25

10

20

age

5 15 25 35 45 55

count

0

5

15

25

10

20

Slide Deck Title

Column Equality?
T.p = T.age ??
Idea: scan over all values of p and age, and check when they are equal

T.p = T.age
= (T.p = 40 ∧ T.age = 40) ∨ (T.p = 41 ∧ T.age = 41) ∨ (T.p = 42 ∧ T.age = 42) …
= (T.p = 40 ∧ T.age = 40) + (T.p = 41 ∧ T.age = 41) + (T.p = 42 ∧ T.age = 42) …
= (T.p = 40 * T.age = 40) + (T.p = 41 * T.age = 41) + (T.p = 42 * T.age = 42) …

Independence assumption

(T.p = 40)
= height(binp(40))

width(binp(40)) ∗ n
Uniform assumption

Just add up all the values…

(T.age = 40)
= height(binage(40))

width(binage(40)) ∗ n

Slide Deck Title

What you need to know
• Know how to compute selectivities for basic predicates

• The original Selinger version
• The histogram version

• Assumption 1: uniform distribution within histogram bins
• Within a bin, fraction of range = fraction of count

• Assumption 2: independent predicates
• Selectivity of AND = product of selectivities of predicates
• Selectivity of OR = sum of selectivities of predicates - product of selectivities of predicates
• Selectivity of NOT = 1 – selectivity of predicates

• Joins are not a special case
• Simply compute the selectivity of all predicates
• And multiply by the product of the table sizes

=

Slide Deck Title

Summary: Selectivity Estimation

• We need a way to estimate the size of the
intermediate tables
• Recall cost of each operator =

I/Os (to bring in input) + CPU-factor * # tuples processed

• Output size = input size * operator selectivity

Slide Deck Title

Summary: Selectivity Estimation
System R

• col=value
• 1/uniq-keys(col)

• col1=col2
• 1/MAX(uniq-keys(col1),

uniq-keys(col2))

• col>value
High(col) − value

High(col) – Low(col) + 1

Histogram

• col=value

• col1=col2
• Breakdown into

(col1 = v1 ∧ col2 = v1) ∨
(col1 = v2 ∧ col2 = v2) ∨ …

• col>value
sum of bar heights >value

total number of rows

bar height containing value
(# values contained in bar) * n

Uniform assumption

See discussion for floating-point-valued columns!

Slide Deck Title

Summary: Selectivity Estimation
• In both cases, for more complex predicates:

• p1 ∧ p2
• selectivity(p1) * selectivity(p2)

• p1 ∨ p2
• selectivity(p1) + selectivity(p2) – (selectivity(p1) * selectivity(p2))
• Last term is 0 if p1 and p2 are non-overlapping

(e.g., age>60 OR age<21)
• not p1 = 1 – selectivity(p1)

• This stems from our independence assumption

Slide Deck Title

Query Optimization
1.Plan Space

2.Cost Estimation

3.Search Algorithm

Slide Deck Title

Enumeration of Alternative Plans

• There are two main cases:
• Single-table plans (base case)
• Multiple-table plans (induction)

• Single-table queries include selects, projects, and
groupBy/agg:
• Consider each available access path (file scan /

index)
• Choose the one with the least estimated cost

Slide Deck Title

Cost Estimates for Single-Relation Plans
• Index I on primary key matches selection:

• Cost is (Height(I) + 1) + 1 for a B+ tree.

• Clustered index I matching selection:
• (NPages(I)+NPages(R)) * selectivity (approximately)

• Non-clustered index I matching selection:
• (NPages(I)+NTuples(R)) * selectivity (approximately)

• Sequential scan of file:
• NPages(R).

• Recall: Must also charge for duplicate elimination if required

Slide Deck Title

Example
• If we have an index on rating:

• Cardinality = (1/NKeys(I)) * NTuples(R) = (1/10) * 40000 tuples
• Clustered index: (1/NKeys(I)) * (NPages(I)+NPages(R))

= (1/10) * (50+500) = 55 pages are retrieved.
• Unclustered index: (1/NKeys(I)) * (NPages(I)+NTuples(R))

= (1/10) * (50+40000) = 4005 pages are retrieved.
• (costs on indexes are approximate as we might not need to retrieve all index pages)

• If we have an index on sid:
• Would have to (roughly) retrieve all tuples/pages. With a clustered index, the cost is ~ 50+500,

with unclustered index, ~ 50+40000.

• Doing a file scan:
• We retrieve all file pages (500).

SELECT S.sid
FROM Sailors S
WHERE S.rating=8

Slide Deck Title

Joins: Enumeration of Left-Deep Plans

• Left-deep plans differ in
• the order of relations
• the access method for each leaf operator
• the join method for each join operator

• Enumerated using N passes (if N relations joined):
• Pass 1: Find best 1-relation plan for each relation
• Pass i: Find best way to join result of an (i -1)-relation plan (as outer) to the i’th relation. (i

between 2 and N.)

• For each subset of relations, retain only:
• Cheapest plan overall, plus
• Cheapest plan for each interesting order of the tuples.

BA

C

D

AB

D

C

Slide Deck Title

The Principle of Optimality
• Bellman ’57 (slightly adapted to our setting)
• The best overall plan is composed of best decisions on the subplans

• Optimal result has optimal substructure
• For example, the best left-deep plan to join tables A, B, C is either:

• (The best plan for joining A, B) ⨝ C
• (The best plan for joining A, C) ⨝ B
• (The best plan for joining B, C) ⨝ A

• This is great!
• When optimizing a subplan (e.g. A ⨝ B), we don’t have to think about how it will be

used later (e.g. when dealing with C)!
• When optimizing a higher-level plan (e.g. A ⨝ B ⨝ C) we can reuse the best results

of subroutines (e.g. A ⨝ B)!

Slide Deck Title

Dynamic Programming Algorithm for System R

• Principle of optimality allows us to build best subplans
“bottom up”
• Pass 1: Find best plans of height 1 (base table accesses), and record them in a table
• Pass 2: Find best plans of height 2 (joins of base tables) by combining plans of height

1, record them in a table
• …
• Pass i: Find best plans of height i by combining plans of height i - 1 with plans of

height 1, record them in a table
• …
• Pass n: Find best plan overall by combining plans of height n-1 with plans of height 1.

Slide Deck Title

The Basic Dynamic Programming Table

Subset of tables
in FROM clause

Best plan Cost

{R, S} hashjoin(R,S) 1000

{R, T} mergejoin(R,T) 700

Table keyed on 1st column

Slide Deck Title

A Note on “Interesting Orders”
• Physical property: Order.

When should we care? When is it “interesting”?

• An intermediate result has an “interesting order” if it is
sorted by anything we can use later in the query (i.e.,
“downstream” op):
• ORDER BY attributes
• GROUP BY attributes
• Join attributes of yet-to-be-added joins

• subsequent merge join might be good

Slide Deck Title

The Dynamic Programming Table

Subset of tables
in FROM clause

Interesting-
order columns

Best plan Cost

{R, S} <none> hashjoin(R,S) 1000

{R, S} <R.a, S.b> sortmerge(R,S) 1500

Table keyed on concatenation of first two columns

ß Higher cost, but may lead to
global optimal plan!

TINSTAFL!!

Slide Deck Title

Enumeration of Plans
• First figure out the scans and joins (select-project-join) using dynamic programming

• Avoid Cartesian Products in dynamic programming as follows:
When matching an i -1 way subplan with another table, only consider it if
• There is a join condition between them, or
• All predicates in WHERE have been “used up” in the i -1 way subplan.

• Then handle ORDER BY, GROUP BY, aggregates etc. as a post-processing step
• Via “interestingly ordered” plan if chosen (free!)
• Or via an additional sort/hash operator

• Despite pruning, this System R dynamic programming algorithm is exponential in
#tables.

Slide Deck Title

Example
SELECT S.sid, COUNT(*) AS number
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid
AND R.bid = B.bid
AND B.color = “red”
GROUP BY S.sid

Pass 1: Best plan(s) for each relation
– Sailors, Reserves: File Scan

– Also B+ tree on Reserves.bid as interesting order (output sorted on bid)
– Also B+ tree on Reserves.sid as interesting order (output sored on sid)
– Also B+ tree on Sailors.sid as interesting order (output sorted on sid)

– Boats: B+ tree on color as interesting order (output sorted on color)

Sailors:
B+ tree indexes on sid

Reserves:
Clustered B+ tree on bid
B+ on sid

Boats
B+ on color

Slide Deck Title

Best plans after pass 1
Subset of tables
in FROM clause

Interesting-
order columns

Best plan Cost

{Sailors} n/a filescan …

{Reserves} n/a Filescan …

{Boats} (color) B-tree on color …

{Reserves} (bid) B-tree on bid ...

{Reserves} (sid) B-tree on sid …

{Sailors} (sid) B-tree on sid …

Slide Deck Title

Pass 2
// for each left-deep logical plan
for each plan P in pass 1
for each FROM table T not in P

// for each physical plan
for each access method M on T

for each join method
generate P ⨝ M(T)

• File Scan Reserves (outer) with Boats (inner)
• File Scan Reserves (outer) with Sailors (inner)
• Reserves Btree on bid (outer) with Boats (inner)
• Reserves Btree on bid (outer) with Sailors (inner)
• File Scan Sailors (outer) with Boats (inner)
• File Scan Sailors (outer) with Reserves (inner)
• Boats Btree on color with Sailors (inner)
• Boats Btree on color with Reserves (inner)

• Retain cheapest plan for each (pair of relations, order)

Slide Deck Title

Subset of tables in
FROM clause

Interesting-order
columns

Best plan Cost

{Sailors} n/a filescan …

{Reserves} n/a Filescan …

{Boats} n/a B-tree on color …

{Reserves} (bid) B-tree on bid …

{Sailors} (sid) B-tree on sid …

{Boats, Reserves} (B.bid)
(R.bid)

SortMerge(B-tree on
Boats.color, filescan
Reserves)

…

Etc...

Best plans after pass 2

Slide Deck Title

Pass 3 and beyond
• Using Pass 2 plans as outer relations, generate

plans for the next join in the same way as Pass 2
• E.g. {SortMerge(B-tree on Boats.color, filescan Reserves)} (outer) |

with Sailors (B-tree sid) (inner)

• Then, add cost for groupby/aggregate:
• This is the cost to sort the result by sid, unless it has

already been sorted by a previous operator.

• Finally, choose the cheapest plan

Slide Deck Title

Now you understand the optimizer!

• Benefit #1: You could build one.
• And you will in project 3!

• Benefit #2: You can influence one
• People who write non-trivial SQL often get frustrated with the optimizer

• It picked a crummy plan!
• It didn’t use the index I built!
• Etc.

• Understanding the optimizer can lead you to:
• Design your DB & Indexes better
• Avoid “weak spots” in your optimizer’s implementation
• Coax your optimizer to do what you want

Relational Query Optimization III:
Physical Database Design

Alvin Cheung
Aditya Parameswaran

Reading: R & G Chapter 20

Slide Deck Title

Physical DB Design
• Query optimizer does what it can to use indices,

clustering etc.
• DataBase Administrator (DBA)
• expected to set up physical design well

• Good DBAs understand
query optimizers very well

Slide Deck Title

One Key Decision: Indexes
• Which tables
• Which field(s) should be the search key?
• Multiple indexes?
• Clustering?

Slide Deck Title

Index Selection
• A greedy approach:

• Consider most important queries in turn.
• Consider best plan using the current indexes
• See if better plan is possible with an additional index.
• If so, create it.

• But consider impact on updates!
• Indexes can make queries go faster, updates slower.
• Require disk space, too.

Slide Deck Title

Issues to Consider in Index Selection

• Attributes mentioned in a WHERE clause are candidates for index search keys.
• Range conditions are sensitive to clustering
• Exact match conditions don’t require clustering

• Or do they????
• What if you have a lot of duplicate values? Then just like range search!

• Choose indexes that benefit many queries
• NOTE: only one index can be clustered per relation!

• So choose it wisely!

Slide Deck Title

Example 1, Part 1

• B+ tree index on D.dname supports ‘Toy’
selection.
• Given this, index on D.dno isn’t important.

SELECT E.ename, D.mgr
FROM Emp E, Dept D

WHERE E.dno=D.dno
AND D.dname=‘Toy’

Dept
INDEX SCAN

sdname=‘Toy’

Slide Deck Title

Example 1, Part 2
• B+ tree index on D.dname supports ‘Toy’ selection.

• Given this, index on D.dno isn’t important:
D is already filtered prior to join.

• B+ tree index on E.dno allows us to get matching (inner) Emp tuples for
each selected (outer) Dept tuple.

SELECT E.ename, D.mgr
FROM Emp E, Dept D

WHERE E.dno=D.dno
AND D.dname=‘Toy’

pename, mgr

Emp
INDEX SCAN

⨝dno=dno
INDEX NEST LOOP

Dept
INDEX SCAN

sdname=‘Toy’

Slide Deck Title

Example 1, Part 3
• What if WHERE included: “... AND E.age=25” ?

• Could retrieve Emp tuples using index on Emp.age, then join with
Dept tuples satisfying dname selection.
• Comparable performance to strategy that used E.dno index.

• So, if Emp.age index is already created, this query provides much
less motivation for adding an Emp.dno index.

pename, mgr

Emp.age
INDEX SCAN

Dept.dno
INDEX SCANsage=25

⨝dno=dno
INDEX NEST LOOP

SELECT E.ename, D.mgr
FROM Emp E, Dept D

WHERE E.dno=D.dno
AND D.dname=‘Toy’

pename, mgr

Emp
INDEX SCAN

⨝dno=dno
INDEX NEST LOOP

Dept
INDEX SCAN

sdname=‘Toy’

Slide Deck Title

Index Tuning “Wizards”
• A number of RDBMSs now have automated index advisors

• Some info in Section 20.6 of the book
• Basic idea:

• Train on a workload of queries
• Possibly based on logging what’s been going on

• Use the optimizer cost metrics to estimate the cost of the workload over
different choices of sets of indexes

• Enormous # of different choices of sets of indexes:
• Heuristics to help this go faster

Slide Deck Title

Tuning Queries and Views
• If a query runs slower than expected:

• check if an index needs to be re-clustered, or if statistics are too old.

• Sometimes, the DBMS may not be executing the plan you had in mind.
• Common areas where optimizers are sub-par:

• Selections involving null values (bad selectivity estimates)
• Selections involving arithmetic or string expressions (ditto)
• Selections involving OR conditions (ditto)
• Complex subqueries (lack of flattening)
• Failed cost estimation (a common problem in large queries)
• Lack of evaluation features like index-only strategies or certain join methods.

• Check the plan that is being used!
• Then adjust the choice of indexes or rewrite the query/view.

• E.g. check via SQL EXPLAIN command
• Many systems rewrite for you under the covers (e.g. DB2)

• Can be confusing and/or helpful!

Slide Deck Title

Points to Remember
• Want to understand DB design (tables, indexes)?

• Must understand query optimization
• Three parts to optimizing a query:

• Plan space
• E.g., left-deep plans only
• avoid Cartesian products.
• Prune plans with interesting orders separate from unordered plans

• Cost Estimation
• Output cardinality and cost for each plan node.
• Key issues: Statistics, indexes, operator implementations.

• Search Strategy
• we learned “bottom-up” dynamic programming

Slide Deck Title

Points to Remember, cont
• Single-relation queries:

• All access paths considered, cheapest is chosen.
• Issues:

• Selections that match index
• Whether index key has all needed fields
• Whether index provides tuples in an interesting order.

Slide Deck Title

More Points to Remember

• Multiple-relation (aka Join) queries:
• All single-relation plans are first enumerated.

• Selections/projections considered as early as possible.

• Use best 1-way plans to form 2-way plans. Prune
losers.

• Use best (i-1)-way plans and best 1-way plans to
form i-way plans

• At each level, for each subset of relations, retain:
• Best plan for each interesting order (including no order)

Slide Deck Title

Summary
• Optimization is the reason for the lasting power of the

relational system
• Active area of research!

• Smarter statistics (fancy histograms, “sketches”)
• Auto-tuning statistics
• Adaptive runtime re-optimization (e.g. Eddies)
• Multi-query optimization
• Parallel scheduling issues

