
Transactions &
Concurrency Control II

Alvin Cheung
Aditya Parameswaran

Reading: R & G Chapter 16-17

Transaction Implementations
• Many available!

• Targets different workloads

• We will focus on lock-based implementations
• Others: use multiple versions of data and “optimistically” let

transactions move forward
• Abort when conflicts are detected

• Some names to know/look up:
• Optimistic Concurrency Control
• Timestamp-Ordered Multiversion Concurrency Control

• We will not study these schemes in this lecture

“Lock” data??
• Not by any crypto or hardware enforcement

• There are no adversaries here … this is all within the DBMS

• Recall locks / semaphores from 61c
• These are synchronization primitives
• Locking / unlocking has costs

• We lock by simple convention within the DBMS:
• Each data element has a unique lock
• Each transaction must first acquire the lock before reading/writing that element
• If the lock is taken by another transaction, then wait
• The transaction must release the lock(s) at some point

• Different lock protocols / schemes differ by:
• When to lock / unlock each data element
• What data element to lock
• What happens when a txn waits for a lock

What are “data elements”?

Major differences between vendors:

• Lock on the entire database
• SQLite

• Lock on individual records
• SQL Server, DB2, etc

• Will see tradeoffs later on

Slide Deck Title

Actions on Locks

Locki(A) / Li(A) = transaction Ti acquires lock for element A

Unlocki(A) / Ui(A) = transaction Ti releases lock for element A

Let’s see this in action…

Slide Deck Title

A Non-Serializable Schedule
T1 T2
READ(A)
A := A+100
WRITE(A)

READ(A)
A := A*2
WRITE(A)
READ(B)
B := B*2
WRITE(B)

READ(B)
B := B+100
WRITE(B)

Slide Deck Title

Example
T1 T2
L1(A); READ(A)
A := A+100
WRITE(A); U1(A); L1(B)

L2(A); READ(A)
A := A*2
WRITE(A); U2(A);
L2(B); BLOCKED…

READ(B)
B := B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(B);

Using locks has ensured a conflict-serializable schedule

Slide Deck Title

But…
T1 T2
L1(A); READ(A)
A := A+100
WRITE(A); U1(A);

L2(A); READ(A)
A := A*2
WRITE(A); U2(A);
L2(B); READ(B)
B := B*2
WRITE(B); U2(B);

L1(B); READ(B)
B := B+100
WRITE(B); U1(B);

Locks did not enforce conflict-serializability!!! What’s wrong ?

Slide Deck Title

Two Phase Locking (2PL)

In every transaction, all lock requests
must precede all unlock requests

The 2PL rule:

Slide Deck Title

Example: 2PL transactions
T1 T2
L1(A); L1(B); READ(A)
A := A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B := B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B);

Now it is conflict-serializable

Slide Deck Title

Two Phase Locking (2PL)

11

Theorem: 2PL ensures conflict serializability

Slide Deck Title

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the dependence graph.

T1

T2

T3

BA

C

Slide Deck Title

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the dependence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:

Slide Deck Title

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the dependence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A) why?

U1(A) happened
strictly before L2(A)

Slide Deck Title

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the dependence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B) why?

L2(A) happened
strictly before U1(A)

Slide Deck Title

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the dependence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B) why?

Slide Deck Title

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the dependence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B)

......etc.....

Slide Deck Title

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the dependence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B)
L3(B)àU3(C)
U3(C)àL1(C)
L1(C)àU1(A)

Cycle in time:
Contradiction

Slide Deck Title

A New Problem: Non-recoverable Schedule
T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B);
Commit

Rollback Aka cascading aborts

Slide Deck Title

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B);
Commit

Rollback

Elements A, B written
by T1 are restored
to their original value.

A New Problem: Non-recoverable Schedule

Slide Deck Title

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B);
Commit

Rollback

Elements A, B written
by T1 are restored
to their original value.

Dirty reads of
A, B lead to
incorrect writes.

A New Problem: Non-recoverable Schedule

Slide Deck Title

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B);
Commit

Rollback

Elements A, B written
by T1 are restored
to their original value. Can no longer undo!

Dirty reads of
A, B lead to
incorrect writes.

A New Problem: Non-recoverable Schedule

Slide Deck Title

Strict 2PL

All locks are held until commit/abort:
All unlocks are done together with commit/abort.

The Strict 2PL rule:

With strict 2PL, we will get schedules that
are both conflict-serializable and recoverable

Slide Deck Title

Strict 2PL

24

T1 T2
L1(A); READ(A)
A :=A+100
WRITE(A);

L2(A); BLOCKED…

L1(B); READ(B)

B :=B+100

WRITE(B);

Rollback & U1(A);U1(B);

…GRANTED; READ(A)

A := A*2
WRITE(A);
L2(B); READ(B)
B := B*2
WRITE(B);

Commit & U2(A); U2(B);

Slide Deck Title

Strict 2PL

• Lock-based systems always use strict 2PL
• Easy to implement:

• Before a transaction reads or writes an element A, insert
an L(A)

• When the transaction commits/aborts, then release all
locks

• Ensures both conflict serializability and recoverability

Slide Deck Title

Another problem: Deadlocks
• T1: R(A), W(B)
• T2: R(B), W(A)

• T1 holds the lock on A, waits for B
• T2 holds the lock on B, waits for A

This is a deadlock!

Deadlock Prevention

• Common technique in operating systems

• Standard approach: resource ordering
• Screen < Network Card < Printer

• Why is this problematic for transactions?
• What order would you impose?

Deadlock Avoidance
• Assign priorities based on age: (now – start_time).
• Say Ti wants a lock that Tj holds. Two possible policies:

• Wait-Die: If Ti has higher priority, Ti waits for Tj; else Ti aborts
• Wound-Wait: If Ti has higher priority, Tj aborts; else Ti waits

• Read each of these like a ternary operator (C/C++/java/javascript)

Ti > Tj ?

Ti > Tj ?

:

Wound Wait

:

Wait Die

Deadlock Avoidance: Analysis

• Q: Why do these schemes guarantee no deadlocks?
• Q: What do the previous images have in common?

• Important Detail: If a transaction re-starts, make sure it gets its original timestamp. Why?
• Note: other priority schemes make sense

• E.g. measures of resource consumption, like #locks acquired

Deadlock Detection

• Create and maintain a “waits-for” graph
• Periodically check for cycles in a graph

Deadlock Detection, Part 2

T1 T2

T4 T3

Example:

T1:
T2:
T3:
T4:

Deadlock Detection, Part 3

T1 T2

T4 T3

Example:

T1: R(A)
T2:
T3:
T4:

Deadlock Detection, Part 4

T1 T2

T4 T3

Example:

T1: R(A) R(D)
T2:
T3:
T4:

Deadlock Detection, Part 5

T1 T2

T4 T3

Example:

T1: R(A) R(D)
T2: W(B)
T3:
T4:

Deadlock Detection, Part 6

T1 T2

T4 T3

Example:

T1: R(A) R(D) R(B)
T2: W(B)
T3:
T4:

Deadlock Detection, Part 7

T1 T2

T4 T3

Example:

T1: R(A) R(D) R(B)
T2: W(B)
T3: R(D)
T4:

Deadlock Detection, Part 8

T1 T2

T4 T3

Example:

T1: R(A) R(D) R(B)
T2: W(B)
T3: R(D) R(C)
T4:

Deadlock Detection, Part 9

T1 T2

T4 T3

Example:

T1: R(A) R(D) R(B)
T2: W(B) W(C)
T3: R(D) R(C)
T4:

Deadlock Detection, Part 10

T1 T2

T4 T3

Example:

T1: R(A) R(D) R(B)
T2: W(B) W(C)
T3: R(D) R(C)
T4: W(B)

Deadlock Detection, Part 11
Example:

T1: R(A) R(D) R(B)
T2: W(B) W(C)
T3: R(D) R(C) W(A)
T4: W(B)

T1 T2

T4 T3

Deadlock!

• T1, T2, T3 are deadlocked
• Doing no good, and holding locks

• T4 still cruising
• In the background, run a deadlock detection algorithm

• Periodically extract the waits-for graph
• Find cycles
• “Shoot” a transaction on the cycle

• Empirical fact
• Most deadlock cycles are small (2-3 transactions)

Slide Deck Title

Lock Modes
• S = shared lock (for READ)
• X = exclusive lock (for WRITE)
• Cannot get new locks after releasing any locks

(strict 2PL)

None S X
None

S
X

Lock compatibility matrix:

Slide Deck Title

Lock Modes
• S = shared lock (for READ)
• X = exclusive lock (for WRITE)
• Cannot get new locks after releasing any locks

(strict 2PL)

None S X
None ✔ ✔ ✔

S ✔ ✔ ✖

X ✔ ✖ ✖

Lock compatibility matrix:

Lock Management

• Lock and unlock requests handled by Lock Manager

• LM maintains a hashtable, keyed on names of objects being locked.

• LM keeps an entry for each currently held lock
• Entry contains

• Granted set: Set of txns currently granted access to the lock
• Lock mode: Type of lock held (shared or exclusive)
• Wait Queue: Queue of lock requests

Granted Set Mode Wait Queue
A {T1, T2} S T3(X) ß T4(X)

B {T6} X T5(X) ß T7(S)

Lock Management (continued)

• When lock request arrives:
• Does any txn in Granted Set or Wait Queue want a conflicting lock?

• If no, put the requester into “granted set” and let them proceed
• If yes, put requester into wait queue (typically FIFO)

• Lock upgrade:
• Txn with shared lock can request to upgrade to exclusive

Granted Set Mode Wait Queue
A {T1, T2} S T3(X) ß T4(X)

B {T6} X T5(X) ß T7(S)

Slide Deck Title

Lock Granularity
• Fine granularity locking (e.g., tuples)

• High concurrency
• High overhead in managing locks
• E.g., SQL Server

• Coarse grain locking (e.g., tables, entire database)
• Many false conflicts
• Less overhead in managing locks
• E.g., SQL Lite

• Solution: lock escalation changes granularity as needed

Lock Granularity, cont

• Hard to decide what granularity to lock
• Tuples vs Pages vs Tables?

• What is the tradeoff?
• Fine-grained availability of resources would be nice (e.g. lock per tuple)
• Small # of locks to manage would also be nice (e.g. lock per table)
• Can’t have both!

• Or can we???

Multiple Locking Granularity

• Shouldn’t have to make same decision for all transactions!
• Allow data items to be of various sizes
• Define a hierarchy of data granularities, small nested within large

• Can be represented graphically as a tree.

Slide Deck Title

Lock Performance

Th
ro

ug
hp

ut
 (T

PS
)

Active Transactions

thrashing

Why ?

TPS =
Transactions
per second

To avoid, use
granular locks!

Example of Granularity Hierarchy
• Data “containers” can be viewed as nested.
• The levels, starting from the coarsest (top) level are

• Database, Tables, Pages, Records
• When a transaction locks a node in the tree explicitly, it implicitly locks all the node’s descendants in

the same mode.

contains
DB

T1 T2

Pa Pb Pc

ra1 ra2 ran rb1 rbk rc1 rcm

Multiple Locking Granularity
• Granularity of locking (level in tree where locking is done):

• Fine granularity (lower in tree): High concurrency, lots of locks (overhead)
• Coarse granularity (higher in tree): Few locks (low overhead), lost concurrency

• Lost potential concurrency if you don’t need everything inside the coarse grain

DB

T1 T2

Pa Pb Pc

ra1 ra2 ran rb1 rbk rc1 rcm

Real-World Locking Granularities
Resource Description

RID A row identifier used to lock a single row within a heap.

KEY A row lock within an index used to protect key ranges in serializable transactions.

PAGE An 8-kilobyte (KB) page in a database, such as data or index pages.

EXTENT A contiguous group of eight pages, such as data or index pages.

HoBT A heap or B-tree. A lock protecting a B-tree (index) or the heap data pages in a table that does not have a
clustered index.

TABLE The entire table, including all data and indexes.

FILE A database file.

APPLICATION An application-specified resource.

METADATA Metadata locks.

ALLOCATION_UNIT An allocation unit.

DATABASE The entire database.

From MS SQL Server
https://technet.microsoft.com/en-
us/library/jj856598(v=sql.110).aspx

New Lock Modes and Protocol

• Allow txns to lock at each level, but with a special protocol using new “intent” locks:
• Before getting S or X lock, txn must have proper intent locks on all its ancestors in the

granularity hierarchy.

DB

T1 T2

Pa Pb Pc

ra1 ra2 ran rb1 rbk rc1 rcm

Intent-to-share (IS)

Intent-to-share (IS)

Share (S)

New Lock Modes – Intention Lock Modes

• 3 additional lock modes:
• IS: Intent to get S lock(s) at finer granularity.
• IX: Intent to get X lock(s) at finer granularity.
• SIX: Like S & IX at the same time. Why useful?

• Intention locks allow a higher level node to be locked in S or X mode without
having to check all descendent nodes

Page P Tuple t1

Tuple t2

Yik San Chan
Useful when: UPDATE employees SET salaries = 1M WHERE name = ‘bob’.

Need the S lock to read the whole table, and need the IX lock because we gonna write to a few tuples.

Multiple Granularity Locking Protocol

• Each txn starts from the root of the hierarchy.
• To get S or IS lock on a node, must hold IS or IX on parent node.
• To get X or IX or SIX on a node, must hold IX or SIX on parent node.
• Must release locks in bottom-up order.

• Enforce (strict) 2-phase locking as before
• Protocol is correct in that it is equivalent to directly setting locks at leaf levels of the hierarchy.

• What does the lock compatibility matrix look like?

Tuples

Tables

Pages

Database

Yik San Chan

Lock Compatibility Matrix
• IS – Intent to get S lock(s) at finer granularity.
• IX – Intent to get X lock(s) at finer granularity.
• SIX mode: Like S & IX at the same time.

IS IX S SIX X

IS

IX

S true false

SIX

X false false

Page P Tuple t1

Tuple t2
ISS
IXX

Handy simple case to remember:
Could 2 intent locks be compatible?

Tuples

Tables

Pages

Database

Yik San Chan
Since S lock on t1 is compatible with X lock on t2, then IS lock on page P should be compatible with IX lock on page P

Yik San Chan
true

Yik San Chan
true

Yik San Chan
true

Yik San Chan
true

Yik San Chan
false

Yik San Chan
false

Yik San Chan
false

Yik San Chan
false

Yik San Chan
true

Yik San Chan
false

Yik San Chan
false

Yik San Chan
false

Lock Compatibility Matrix, Cont

IS IX S SIX X

IS true true true true false

IX true true false false false

S true false true false false

SIX true false false false false

X false false false false false

Page P Tuple t1

Tuple t2
ISS
IXX

Handy simple case to remember:
Could 2 intent locks be compatible?

Tuples

Tables

Pages

Database

• IS – Intent to get S lock(s) at finer granularity.
• IX – Intent to get X lock(s) at finer granularity.
• SIX mode: Like S & IX at the same time.

Real-World Lock Compatibility Matrix

From MS SQL Server
https://technet.microsoft.com/en-
us/library/jj856598(v=sql.110).aspx

Slide Deck Title

Phantom Problem
• So far we have assumed the database to be a

static collection of elements (=tuples)

• If tuples are inserted/deleted then the phantom
problem appears

Slide Deck Title

Phantom Problem

Is this schedule serializable ?

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

Slide Deck Title

Phantom Problem
T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

No: T1 sees a “phantom” product A3

Is this schedule serializable ?

Slide Deck Title
W2(A3);R1(A1);R1(A2);R1(A1);R1(A2);R1(A3)

Phantom Problem

R1(A1);R1(A2);W2(A3);R1(A1);R1(A2);R1(A3)

T1 T2

SELECT *

FROM Product

WHERE color=‘blue’

INSERT INTO Product(name, color)

VALUES (‘A3’,’blue’)

SELECT *

FROM Product

WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

But this is conflict-serializable!

Slide Deck Title

Phantom Problem
• A “phantom” is a tuple that is invisible during part of a transaction

execution but not invisible during the entire execution

• In our example:
• T1: reads list of products
• T2: inserts a new product
• T1: re-reads: a new product appears !

• Conflict-serializability assumes DB is static
• When DB is dynamic then c-s is not serializable.

Slide Deck Title

Dealing With Phantoms

• Lock the entire table
• Lock the index entry for ‘blue’
• If index is available

• Or use predicate locks
• A lock on an arbitrary predicate

Dealing with phantoms is expensive !

Slide Deck Title

Summary of Serializability
• Serializable schedule = equivalent to a serial schedule
• (strict) 2PL guarantees conflict serializability
• What is the difference?

• Static database:
• Conflict serializability implies serializability

• Dynamic database:
• This no longer holds

Summary, cont.
• Correctness criterion for isolation is “serializability”.

• In practice, we use “conflict serializability” which is conservative but easy to enforce
• Two Phase Locking and Strict 2PL: Locks implement the notions of conflict directly

• The lock manager keeps track of the locks issued.
• Deadlocks may arise; can either be prevented or detected.

• Multi-Granularity Locking:
• Allows flexible tradeoff between lock “scope” in DB, and # of lock entries in lock table

• More to the story
• Optimistic/Multi-version/Timestamp CC
• Index “latching”, phantoms
• Actually, there’s much much more J

