Recovery

Alvin Cheung
Aditya Parameswaran
R&G - Chapter 16,18

Berkeley

cs186

Review: The ACID properties

* Atomicity: All actions in the txn happen, or none happen.

« Consistency: If the DB starts consistent before the txn...
it ends up consistent after.

* |solation: Execution of one txn is isolated from that of others.
* Durability: If a txn commits, its effects persist.

« Recovery Manager
* Atomicity & Durability
« Also to rollback transactions that violate Consistency

Motivation

« Atomicity: crashl!
« Transactions may abort (“Rollback”). T1 Commit I
* Durability: T2 Abort
What if DBMS stops running? T3 Commit |
. T4 —
» Desired state after system restarts: T5 —

* T1 & T3 should be durable.
* T2, T4 & T5 should be aborted (effects not seen).

« Questions:
* Why do transactions abort?
* Why do DBMSs stop running?

Atomicity: Why Do Transactions Abort?

« User/Application explicitly aborts

« Failed Consistency check
 Integrity constraint violated

« Deadlock
« System failure prior to successful commit

Transactions and SQL

 SQL Basics
 BEGIN

* COMMIT
* ROLLBACK

SQL Savepoints

« Savepoints
e SAVEPOINT <name>
* RELEASE SAVEPOINT <name>

« Makes it as if the savepoint never existed
* ROLLBACK TO SAVEPOINT <name>

- Statements since and including the savepoint are rolled back

BEGIN;
INSERT INTO tablel VALUES ('yesl');
SAVEPOINT spl;
INSERT INTO tablel VALUES ('yes2');
RELEASE SAVEPOINT spl;
SAVEPOINT sp2;
INSERT INTO tablel VALUES ('no');
ROLLBACK TO SAVEPOINT sp2;
INSERT INTO tablel VALUES ('yes3');
COMMIT;

Example of SQL Integrity Constraints

 (Constraint violation rolls back transaction

cs186=# BEGIN;

cs186=# CREATE TABLE sailors(sid integer PRIMARY KEY, name text);
cs186=# CREATE TABLE reserves(sid integer, bid integer, rdate date,
cs186(# FOREIGN KEY (sid) REFERENCES sailors);

cs186=# INSERT INTO sailors VALUES (123, 'popeye');
cs186=# INSERT INTO reserves VALUES (123, 1, '7/4/1776');
cs186=# COMMIT;

csl186=#

These days:
* FIRE! PANDEMIC! APOCALYPSE!

Operator Error

e Trip over the power cord

* Type the wrong command
Configuration Error

* Insufficient resources: disk space

* File permissions, etc.
Software Failure

 DBMS bugs, security flaws, OS bugs
Hardware Failure

* Media or Server

Starting our Recovery Discussion

« Assumption: Concurrency control is in effect.
« Strict 2PL, in particular.
« Assumption: Updates are happening “in place”.

* i.e. data is modified in buffer pool and pages in DB are overwritten
» Transactions are not done on “private copies” of the data

- Challenge: Buffer Manager
- Changes are performed in memory
- Changes are then written to disk
- This discontinuity complicates recovery

Impact of Buffer Manager (Recap)

Disk page

Free frame

Page request from higher-level code

Buffer pool

|

READ/WRITE

Main

memory

FETCH/FLUSH

1 page corresponds
to 1 disk block

10

Primitive Operations

- READ(X1)
« copy value of data item X to transaction local variable t
- WRITE(X,1)

* copy transaction local variable t to data item X

« FETCH(X)
* read page containing data item X to memory buffer
- FLUSH(X)

« write page containing data item X to disk

Running Example

BEGIN TRANSACTION
READ(A1);

t:=12;

WRITE(A,});

READ(B,1);

t:=12;

WRITE(B,1)

COMMIT;

Initially, A=B=8.

Atomicity requires that either
(1) T commits and A=B=16, or
(2) T does not commit and A=B=8.

12

READ(A,t); t :=t*2; WRITE(At);

READ(B,t); t := t*2; WRITE(B,t)

Transaction Buffer pool Disk
Action t Mem A | MemB | Disk A | DiskB
FETCH(A) 8 8 8
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
FETCH(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
FLUSH(A) 16 16 16 16 8
FLUSH(B) 16 16 16 16 16
COMMIT

Is this bad ?

Action t Mem A | MemB Disk A Disk B
FETCH(A) 8 8 8
READ(A 1) 8 8 8 8

t:=t*2 16 8 8 8
WRITEAYH | 16 16 8 8
FETCH(B) 16 16 8 8 8
READ(B.1) 8 16 8 8 8

t:=t*2 16 16 8 8 8
WRITEBH | 16 16 16 8 8
FLUSH(A) 16 16 16 16 8
FLUSH(B) 16 16 16 16 1o
COMMIT

Is this bad ? Yes it's bad: A=16, B=8....

Action t Mem A | Mem B | Disk A Disk B
FETCH(A) 8 8 8
READ(A 1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A 1) 16 16 8 8
FETCH(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,1) 16 16 16 8 8
FLUSH(A) 16 16 16 16 8
FLUSH(B) 16 16 16 16 10

Crash!

COMMIT

Is this bad ?

Action t MemA | MemB | Disk A | Disk B
FETCH(A) 8 8 8
READ(A,1) 8 8 8 8

t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
FETCH(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
FLUSH(A) 16 16 16 16 8
FLUSH(B) 16 16 16 16 16

COMMIT

Crash!

Is this bad ? | | Yes it's bad: A=B=16, but not committed
Action t Mem A | MemB | Disk A Disk B
FETCH(A) 8 8 8
READ(AY) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(At) 16 16 8 8
FETCH(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
FLUSH(A) 16 16 16 16 8
FLUSH(B) 16 16 16 16 16

COMMIT

(User may try again)

Crash!

Is this bad ?

Crash!

Action t MemA | MemB | Disk A | DiskB
FETCH(A) 8 8 8
READ(A,1) 8 8 8 8

t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
FETCH(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
FLUSH(A) 16 16 16 16 8
FLUSH(B) 16 16 16 16 16

COMMIT

Crash!

Is this bad ? No: that’'s OK
Action t MemA | MemB | Disk A | DiskB
FETCH(A) 8 8 8
READ(A 1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
FETCH(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
FLUSH(A) 16 16 16 16 &
FLUSH(B) 16 16 16 16 16
COMMIT

Action t MemA | MemB | Disk A | DiskB
FETCH(A) 8 8 8
READ(A,}) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8
FETCH(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
FLUSH(A) 16 16 16 16 8)
FLUSH(B) 16 16 16 16 16 : gr;gl;lheerzlatlc
COMMIT '

Action t Mem A | MemB | Disk A | DiskB
FETCH(A) 8 8 8 R
at if we delaye
READ(A,t 8 8 8 8
ak FLUSH to after
L e 0 8 8 commit?
WRITE(A,t) 16 16 8 8
FETCH(B) 16 16 8 8 8 Only “dirtied” digk
READ(B,) 8 16 8 8 8 when COMMIT is
complete?
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
FLUSH(A) 16 16 16 16 8 ,
1 1 16 16 16 Problematic
PLUSHE) ° ° Crashes!
COMMIT

OK, let’s try this ... Any problematic crashes?
Action t MemA | MemB | Disk A | DiskB
FETCH(A) 8 8 8
READ(A 1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A 1) 16 16 8 8
FETCH(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
FLUSH(A) 16 16 16 16 8
FLUSH(B) 16 16 16 16 16

No such luck!

Action t MemA | MemB | Disk A | DiskB
FETCH(A) 8 8 8
READ(A,1) 8 8 8 8

t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
FETCH(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8

COMMIT

FLUSH(A) 16 16 16 16 8
FLUSH(B) 16 16 16 16 16

L1}

Problematic
Crashes!

No such luck!

Action t MemA | MemB | Disk A | DiskB
FETCH(A) 8 8 8
READ(A,1) 8 8 8 8

t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
FETCH(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8

COMMIT

FLUSH(A) 16 16 16 16 8
FLUSH(B) 16 16 16 16 16

Solution:
Write things down!

Crashes!

4=m | Problematic
=

Solution: Write-Ahead Log

 Log: append-only file containing log records
* This is usually on a different disk, separate from the data pages, allowing recovery

* For every update, commit, or abort operation
* Write a log record
* Multiple transactions run concurrently, log records are interleaved
« After a system crash, use log to:
* Redo transactions that did commit
* Redo ensures Durability

* Undo transactions that didn’t commit
* Undo ensures Atomicity

25

Solution: Write-Ahead Log

- Log: append-only file containing log records

- Also performance implications:
- Log is sequentially written (faster) as opposed to page writes
(random 1/O)

- Log can also be compact, only storing the “delta” as opposed
to page writes (write a page irrespective of change to the page)

* Pack many log records into a log page

26

Two Important Logging Decisions

p
)

h .
v}ﬁ ,,,,,,,,,,, =N i

7

Decision 1: STEAL or NO-STEAL

Impacts ATOMICITY and UNDO

Steal: allow the buffer pool (or another txn) to “steal” a pinned page of an uncommitted
txn by flushing to disk

No-steal: disallow

If we allow “Steal”, then need to deal with uncommitted txn edits appearing on disk
* To ensure Atomicity we need to support UNDO of uncommitted txns

OTOH “No-steal” has poor performance (pinned pages limit buffer replacement)
* But no UNDO required. Atomicity for free.

27

p
)

Two Important Logging Decisions

7

 Decision 2: FORCE or NO-FORCE
* Impacts DURABILITY and REDO

* Force: ensure that all updates of a transaction is “forced” to disk prior to commit

No-force: no need to ensure

If we allow “No-force”, then need to deal with committed txns not being durable
* To ensure Durability we need to support REDO of committed txns
OTOH, “Force” has poor performance (lots of random |/O to commit)

* But no REDO required, Durability for free.

28

Buffer Management summary

No
Force

Force

No Steal

Steal

[
Best

Worst

Performance
Implications

No
Force

Force

No Steal Steal
|
No UNDO UNDO
REDO REDO
[
No UNDO UNDO
No REDO No REDO
(Also no ACID)
Logging/Recovery
Implications

Next, will talk about UNDO logging (Force/Steal), REDO logging
(No Steal/No Force), then finally UNDO-REDO (ARIES!)

UNDO Log

FORCE and STEAL

30

Undo Logging

Log records

<START T>
transaction T has begun

<COMMIT T>

T has committed

<ABORT T>
T has aborted

<T,X,v>
T has updated element X, and its o/ld value was v

31

Action t Mem A Mem B Disk A Disk B UNDO Log
<START T>
FETCH(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,8>
FETCH(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
FLUSH(A) 16 16 16 16 8
FLUSH(B) 16 16 16 16 16
COMMIT <COMMIT T>

32

Action t Mem A Mem B Disk A Disk B UNDO Log
<START T>
FETCH(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 <T,A,8>
FETCH(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
FLUSH(A) 16 16 16 16 8 .
FLUSH(B) 16 16 16 16 16 - |
COMMIT <COMMITT> |

WHAT DO WE DO ?

33

Action t Mem A Mem B Disk A Disk B UNDO Log
<START T>
FETCH(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 <T,A,8>
FETCH(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
FLUSH(A) 16 16 16 16 8 .
FLUSH(B) 16 16 16 16 16
COMMIT <COMMIT T>
WHAT DO WE DO ? || We UNDO by setting B=8 and A=8

34

Action t Mem A Mem B Disk A Disk B UNDO Log
<START T>
FETCH(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,8>
FETCH(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
FLUSH(A) 16 16 16 16 8
FLUSH(B) 16 16 16 16 16
COMMIT <COMMIT T>

What do we do now ?

Crash!

35

Action t Mem A Mem B Disk A Disk B UNDO Log
<START T>
FETCH(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,8>
FETCH(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
FLUSH(A) 16 16 16 16 8
FLUSH(B) 16 16 16 16 16
COMMIT <COMMIT T>

Crash!

What do we do now ? Nothing: log contains COMMIT

Action t Mem A Mem B I Disk A Disk B UNDO Log
— <START T>
FETCH(A) 8 |~ When must]
READ(A.t) 3 3 we force pages)
to disk ?
t:=t*2 16 8 8
4%
WRITE(A 16 16 8 8 <TA8>
FETCH(B) 16 16 8 8 8
READ(B.1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B.1) 16 16 16 8 8 <T,B,8>
FLUSHA) | [16 &) 16 16 16 8
FLUSH®B) || 16 | 16 16 16 16
commiT | <COMMIT T>

Action t Mem A Mem B Disk A Disk B UNDO Log
<START T>
FETCH(A) 8 8 8
READ(A 1) 8 8 8 8
t=t2 16 8 8 8
WRITEAL | 16 16 8 g | L<tAs>)
FETCH®B) | 16 16 8 8 8
READ(B.1) 8 16 8 8 8
t=t2 16 8 8 8
WRITEB,) | —16 | 16 16 8 g | (<tB8>)
(rLusHa) | 16 16 | —+— 16 8
FLUSH(B 16 16 16 16 16
coMMIT |

RULES: log entry before FLUSH before COMMIT

Undo-Logging (Steal/Force) Rules 9%:_8@

U1: If T modifies X, then <T,X,v> must be written to disk before FLUSH(X)

>> Want to record the old value before the new value replaces the old value
permanently on disk.

U2: If T commits, then FLUSH(X) must be written to disk before <COMMIT T>
>> Want to ensure that all changes written by T have been reflected before T is

allowed to commit. !

* Hence: FLUSHes are done early, before the transaction commits

Recovery with Undo Log

<T6,X6,v6>

<START T5>
<START T4>

<T1,X1,vl>
<T5,X5,v5>
<T4,X4,v4>

<T3,X3,v3>
<T2,X2,v2>

<COMMIT T5>

Crash!

Question1: Which updates
are undone ?

Question 2:
How far back
do we need to
read in the log ?

Question 3:

What happens if there
is a second crash,
during recovery ?

40

Recovery with Undo Log

<T6,X6,v6>

<START T5>
<START T4>

<T1,X1,vl>
<T5,X5,v5>
<T4,X4,v4>

<T3,X3,v3>
<T2,X2,v2>

<COMMIT T5>

Crash!

Question1: Which updates ~ All uncommitted

are undone ? txns

Question 2:

How far back Start of earliest
do we need to uncommitted txn

read in the log ?

Question 3:
What happens if there OK: undos are
is a second crash, idempotent

during recovery ?

However, perf implications fixed by ARIES

Recovery with Undo Log

After system crash, run recovery manager
- |dea 1. Decide for each transaction T whether it is completed or

not
 <START T>....<COMMIT T>.... =yes
« <START T>....<ABORT T>....... = yes
* <START Touiiiiiiiiii . =Nno

ldea 2. Undo all modifications by incomplete transactions

42

Recovery with Undo Log

Recovery manager:
- Read log from the end; cases:

« <COMMIT/ABORT T>: mark T as completed

<TX,v>:if T is not completed
then write X=v to disk
else ignore /* committed or aborted txn. */

* <START T>: ignore

« How far back do we need to go?
* All the way to the start!
* Could have a very long txn
* Fixed by checkpointing

43

Recovery with Undo Log

<T6.X6,v6>

<START T5>
<START T4>
<T1,X1,vi>
<T5,X5,v6>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

* Write v6 to X6 on disk

* Write v1 to X1 on disk

» Write v4 to X4 on disk
* Mark T5 as completed
* Write v3 to X3 on disk
» Write v2 to X2 on disk

44

REDO Log

NO-FORCE and NO-STEAL

45

Redo Logging

One minor change to the undo log:

<T,X,v>= T has updated element X, and its new value is v

46

Action t Mem A | Mem B | Disk A | Disk B REDO Log
<START T>
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,) 16 16 8 8 <T,A,16>
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,16>
COMMIT <COMMIT T>
FLUSH(A) 16 16 16 16 8
FLUSH(B) 16 16 16 16 16

47

Action t Mem A | Mem B | Disk A | Disk B REDO Log
<START T>
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,) 16 16 8 8 <T,A,16>
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,16>
COMMIT <COMMIT T>
FLUSH(A) 16 16 16 16 8
FLUSH(B) 16 16 16 16 16 ClraSh!

How do we recover ?

48

Action t Mem A | Mem B | Disk A | Disk B REDO Log
<START T>
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,) 16 16 8 8 <T,A,16>
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,16>
COMMIT <COMMIT T>
FLUSH(A) 16 16 16 16 8
FLUSH(B) 16 16 16 16 16 ClraSh!

How do we recover ? | We REDO by setting A=16 and B=16

49

Crash!

Action t Mem A | Mem B | Disk A | Disk B REDO Log
<START T>
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,) 16 16 8 8 <T,A,16>
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,16>
COMMIT <COMMIT T*
FLUSH(A) 16 16 16 16 8
FLUSH(B) 16 16 16 16 16

How do we recover ?

50

Crash!

Action t Mem A | Mem B | Disk A | Disk B REDO Log
<START T>
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,) 16 16 8 8 <T,A,16>
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,16>
COMMIT <COMMI 7
FLUSH(A) 16 16 16 16 8
FLUSH(B) 16 16 16 16 16

How do we recover ?

Nothing to do!

51

Action t MemA | MemB)l B | REDO Log
When must <START T>
we force pages

EoEeERaN
WRITEAL | 16 16 8 8 <TAA16> |
READBY) | 8 16 8 8 8

t=t<2 16 16 8 8 8
WRITEBH | 16 16 16 8 8 <TB,16> |
COMMIT <COMMIT T>
FLusHA) |7 116 L 16 16 16 8
FLUSH®) || 116 4 16 16 16 16

52

RULE: FLUSH after COMMIT

Action t Mem A | Mem B | Disk A | Disk B REDO Log
<START T>
READAY | 8 8 8 8
=t 16 8 8 8
WRITEAY | 16 16 8 8 <TA16>
READBY) | 8 16 8 8 8
t=t<2 16 16 8 8 8
WRITEBH | 16 16 1A R 8 <T,B.16>
COMMIT NO-STEAL £COMMIT T3
rLusH@a) | 16 6 | 16 | w——8 |
I FLUSH(B)T 16 16 16 16 16

53

Redo-Logging Rules

R1: If T modifies X, then both <T,X,v>and <COMMIT T> must be
written to disk before FLUSH(X) &)-STE AL

Hence: FLUSHes are done Jate

54

Recovery with Redo Log

After system crash, run recovery manager
- Step 1. Decide for each transaction T whether it is completed or

not
 <START T>....<COMMIT T>.... =yes
« <START T>....<ABORT T>....... = yes
* <START Touiiiiiiiiii . =Nno

- Step 2. Read log from the beginning, redo all updates of
committed transactions

(as opposed to: Undo all modifications by incomplete transactions)

Again, this could be slow! Fix with checkpointing (later)

55

Recovery with Redo Log

Committed transactions: T2

<START T1>

<T1,X1,v1> Do Nothing

<START T2>

<T2, X2, v2> Write v2 to X2 on disk
<START T3>

<T1,X3,v3> Do Nothing
<COMMIT T2>

<13,X4,v4> Do Nothing
<T1,X5,v5> Do Nothing

Crash!

Comparison Undo/Redo

- Undo logging:
- Data page FLUSHes must be done early

« If <COMMIT T> is seen, T definitely has written all its data to disk
(hence, don’ t need to undo)

- Redo logging
« Data page FLUSHes must be done late

« If <COMMIT T> is not seen, T definitely has not written any of its data
to disk (hence there is no dirty data on disk)

57

Pro/Con Comparison Undo/Redo

- Undo logging: (Steal/Force)

* Pro: Less memory intensive: flush updated data pages as soon as log records
are flushed, only then COMMIT.

- Con: Higher latency: forcing all dirty buffer pages to be flushed prior to
COMMIT can take a long time.

- Redo logging: (No Steal/No Force)

« Con: More memory intensive: cannot flush data pages unless COMMIT log
has been flushed.

* Pro: Lower latency: don’t need to wait until data pages are flushed to
COMMIT

58

Buffer Management summary

No
Force

Force

No Steal

Steal

[
Best

Worst

Performance
Implications

No
Force

Force

No Steal Steal
|
No UNDO UNDO
REDO REDO
[
No UNDO UNDO
No REDO No REDO
(Also no ACID)
Logging/Recovery
Implications

Next, will talk UNDO logging (Force/Steal), REDO logging
(No Steal/No Force), then finally UNDO-REDO (ARIES!)

Write-Ahead Logging for UNDO/REDO

« Log: An ordered list of log records to allow REDO/UNDO

* Log record contains:
+ <TXID, pagelD, old data, new data>

« and additional control info (which we’ll see soon).

Write-Ahead Logging for UNDO/REDO

« The Write-Ahead Logging Protocol:

1. Must force the log record for an update before the corresponding
data page gets to the DB disk.

2. Must force all log records for a txn before commit.

 l.e. txn is not committed until all of its log records including its “commit”
record are on the stable log.

« #1 (with UNDO info) helps guarantee Atomicity.
« #2 (with REDO info) helps guarantee Durability.
« This allows us to implement Steal/No-Force

; DB ! ‘ (©) Log

