
Recovery

Alvin Cheung
Aditya Parameswaran
R&G - Chapter 16,18



Review: The ACID properties
• Atomicity:  All actions in the txn happen, or none happen.
• Consistency:  If the DB starts consistent before the txn…

it ends up consistent after.
• Isolation:  Execution of one txn is isolated from that of others.
• Durability:  If a txn commits, its effects persist.

• Recovery Manager
• Atomicity & Durability
• Also to rollback transactions that violate Consistency



Motivation
• Atomicity: 

• Transactions may abort (“Rollback”).
• Durability:

• What if DBMS stops running?

• Desired state after system restarts:
• T1 & T3 should be durable.
• T2, T4 & T5 should be aborted (effects not seen).

• Questions:
• Why do transactions abort?
• Why do DBMSs stop running?

crash!
T1
T2
T3
T4
T5

Abort
Commit

Commit



Atomicity: Why Do Transactions Abort?
• User/Application explicitly aborts
• Failed Consistency check

• Integrity constraint violated
• Deadlock
• System failure prior to successful commit



Transactions and SQL

• SQL Basics
• BEGIN

• COMMIT

• ROLLBACK



SQL Savepoints
• Savepoints

• SAVEPOINT <name>
• RELEASE SAVEPOINT <name>

• Makes it as if the savepoint never existed
• ROLLBACK TO SAVEPOINT <name>

• Statements since and including the savepoint are rolled back

BEGIN;
INSERT INTO table1 VALUES ('yes1'); 
SAVEPOINT sp1;
INSERT INTO table1 VALUES ('yes2');
RELEASE SAVEPOINT sp1;
SAVEPOINT sp2;
INSERT INTO table1 VALUES ('no');
ROLLBACK TO SAVEPOINT sp2; 
INSERT INTO table1 VALUES ('yes3');

COMMIT;



Example of SQL Integrity Constraints
• Constraint violation rolls back transaction



Durability: Why Do Databases Crash? 
• These days: 

• FIRE! PANDEMIC! APOCALYPSE!

• Operator Error
• Trip over the power cord
• Type the wrong command

• Configuration Error
• Insufficient resources: disk space
• File permissions, etc.

• Software Failure
• DBMS bugs, security flaws, OS bugs

• Hardware Failure
• Media or Server



Starting our Recovery Discussion
• Assumption: Concurrency control is in effect. 

• Strict 2PL, in particular.
• Assumption: Updates are happening “in place”.

• i.e. data is modified in buffer pool and pages in DB are overwritten 
• Transactions are not done on “private copies” of the data

• Challenge: Buffer Manager
• Changes are performed in memory
• Changes are then written to disk
• This discontinuity complicates recovery



Impact of Buffer Manager (Recap)

Disk

Main
memory

Page request from higher-level code

Buffer pool
Disk page

Free frame

1 page corresponds
to 1 disk block

10

FETCH/FLUSH

READ/WRITE



Primitive Operations

• READ(X,t)
• copy value of data item X to transaction local variable t

• WRITE(X,t)
• copy transaction local variable t to data item X

• FETCH(X)
• read page containing data item X to memory buffer

• FLUSH(X)
• write page containing data item X to disk

11



12

Running Example

Initially, A=B=8.

Atomicity requires that either 
(1) T commits and A=B=16, or
(2) T does not commit and A=B=8.

BEGIN TRANSACTION
READ(A,t); 
t := t*2;
WRITE(A,t); 
READ(B,t); 
t := t*2;
WRITE(B,t)
COMMIT;



13

Action t Mem A Mem B Disk A Disk B
FETCH(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

FETCH(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

COMMIT

Buffer pool DiskTransaction

READ(A,t); t := t*2; WRITE(A,t); 
READ(B,t); t := t*2; WRITE(B,t)



Action t Mem A Mem B Disk A Disk B
FETCH(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

FETCH(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

COMMIT

Is this bad ?

Crash !



Is this bad ?

Action t Mem A Mem B Disk A Disk B
FETCH(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

FETCH(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

COMMIT

Yes it’s bad: A=16, B=8….

Crash !



Is this bad ?

Action t Mem A Mem B Disk A Disk B
FETCH(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

FETCH(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

COMMIT
Crash !



Is this bad ?

Action t Mem A Mem B Disk A Disk B
FETCH(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

FETCH(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

COMMIT

Yes it’s bad: A=B=16, but not committed

Crash !

(User may try again)



Is this bad ?

Action t Mem A Mem B Disk A Disk B
FETCH(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

FETCH(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

COMMIT

Crash !



Is this bad ?

Action t Mem A Mem B Disk A Disk B
FETCH(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

FETCH(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

COMMIT

No: that’s OK

Crash !



Problematic 
Crashes!

Action t Mem A Mem B Disk A Disk B
FETCH(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

FETCH(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

COMMIT



Problematic 
Crashes!

Action t Mem A Mem B Disk A Disk B
FETCH(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

FETCH(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

COMMIT

What if we delayed
FLUSH to after 
commit?

Only “dirtied” disk 
when COMMIT is 
complete?



OK, let’s try this …

Action t Mem A Mem B Disk A Disk B
FETCH(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

FETCH(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

Any problematic crashes?



No such luck!

Action t Mem A Mem B Disk A Disk B
FETCH(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

FETCH(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

Problematic 
Crashes!



No such luck!

Action t Mem A Mem B Disk A Disk B
FETCH(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

FETCH(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

Problematic 
Crashes!

Solution: 
Write things down!



Solution: Write-Ahead Log
• Log: append-only file containing log records

• This is usually on a different disk, separate from the data pages, allowing recovery
• For every update, commit, or abort operation

• Write a log record
• Multiple transactions run concurrently, log records are interleaved

• After a system crash, use log to:
• Redo transactions that did commit

• Redo ensures Durability
• Undo transactions that didn’t commit

• Undo ensures Atomicity

25

DB Log



Solution: Write-Ahead Log

• Log: append-only file containing log records
• Also performance implications: 

• Log is sequentially written (faster) as opposed to page writes 
(random I/O)

• Log can also be compact, only storing the “delta” as opposed 
to page writes (write a page irrespective of change to the page)
• Pack many log records into a log page

26

DB Log



Two Important Logging Decisions

• Decision 1: STEAL or NO-STEAL
• Impacts ATOMICITY and UNDO

• Steal: allow the buffer pool (or another txn) to “steal” a pinned page of an uncommitted 
txn by flushing to disk

• No-steal: disallow

• If we allow “Steal”, then need to deal with uncommitted txn edits appearing on disk
• To ensure Atomicity we need to support UNDO of uncommitted txns

• OTOH “No-steal” has poor performance (pinned pages limit buffer replacement)
• But no UNDO required. Atomicity for free.

27



Two Important Logging Decisions

• Decision 2: FORCE or NO-FORCE
• Impacts DURABILITY and REDO 

• Force: ensure that all updates of a transaction is “forced” to disk prior to commit 
• No-force: no need to ensure

• If we allow “No-force”, then need to deal with committed txns not being durable
• To ensure Durability we need to support REDO of committed txns

• OTOH, “Force” has poor performance (lots of random I/O to commit)
• But no REDO required, Durability for free.

28



Buffer Management summary

Force

No
Force

No Steal Steal

Worst

Best

Performance
Implications

No Steal Steal

No REDO
(Also no ACID)

No UNDO UNDO

No REDO

UNDO
REDO

No UNDO
REDO

Logging/Recovery
Implications

Force

No
Force

Next, will talk about UNDO logging (Force/Steal), REDO logging 
(No Steal/No Force), then finally UNDO-REDO (ARIES!) 



UNDO Log

30

FORCE and STEAL



31

Undo Logging

Log records
• <START T> 

• transaction T has begun
• <COMMIT T> 

• T has committed
• <ABORT T>

• T has aborted
• <T,X,v>

• T has updated element X, and its old value was v



32

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

FETCH(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

FETCH(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

COMMIT <COMMIT T>



33WHAT DO WE DO ?

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

FETCH(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

FETCH(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

COMMIT <COMMIT T>

Crash !



34WHAT DO WE DO ? We UNDO by setting B=8 and A=8

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

FETCH(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

FETCH(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

COMMIT <COMMIT T>

Crash !



35What do we do now ?

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

FETCH(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

FETCH(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

COMMIT <COMMIT T>
Crash !



What do we do now ? Nothing: log contains COMMIT

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

FETCH(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

FETCH(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

COMMIT <COMMIT T>
Crash !



Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

FETCH(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

FETCH(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

COMMIT <COMMIT T>

When must
we force pages
to disk ?



Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

FETCH(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

FETCH(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

COMMIT <COMMIT T>

38RULES: log entry before FLUSH before COMMIT
FORCE



39

Undo-Logging (Steal/Force) Rules
U1: If T modifies X, then <T,X,v> must be written to disk before FLUSH(X)

>> Want to record the old value before the new value replaces the old value 
permanently on disk.

U2: If T commits, then FLUSH(X) must be written to disk before <COMMIT T>
>> Want to ensure that all changes written by T have been reflected before T is 
allowed to commit.

• Hence: FLUSHes are done early, before the transaction commits

FORCE

Allows STEAL



40

Recovery with Undo Log
…
…
<T6,X6,v6>
…
…
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

Question1: Which updates
are undone ?

Question 2:
How far back
do we need to
read in the log ?

Question 3:
What happens if  there
is a second crash,
during recovery ?

Crash !



41

Recovery with Undo Log
…
…
<T6,X6,v6>
…
…
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

Question1: Which updates
are undone ?

Question 2:
How far back
do we need to
read in the log ?

Question 3:
What happens if  there
is a second crash,
during recovery ?

Crash !

All uncommitted
txns

Start of earliest
uncommitted txn

OK: undos are
idempotent

However, perf implications fixed by ARIES



42

Recovery with Undo Log

After system crash, run recovery manager 
• Idea 1. Decide for each transaction T whether it is completed or 

not
• <START T>….<COMMIT T>….    = yes
• <START T>….<ABORT T>…….   = yes
• <START T>………………………   = no

• Idea 2. Undo all modifications by incomplete transactions



43

Recovery with Undo Log
Recovery manager:
• Read log from the end; cases:

• <COMMIT/ABORT T>:  mark T as completed
• <T,X,v>: if T is not completed

then write X=v to disk
else ignore /* committed or aborted txn. */

• <START T>: ignore

• How far back do we need to go? 
• All the way to the start!
• Could have a very long txn
• Fixed by checkpointing



44

Recovery with Undo Log

…
…
<T6,X6,v6>
…
…
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2> • Write v2 to X2 on disk

• Write v3 to X3 on disk
• Mark T5 as completed
• Write v4 to X4 on disk

• Write v1 to X1 on disk

• Write v6 to X6 on disk



REDO Log

45

NO-FORCE and NO-STEAL



46

Redo Logging

One minor change to the undo log:

• <T,X,v>= T has updated element X, and its new value is v



47

Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16



Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

48How do we recover ?

Crash !



Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

49How do we recover ? We REDO by setting A=16 and B=16

Crash !



Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

50How do we recover ?

Crash !



Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

51How do we recover ? Nothing to do!

Crash !



Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

52

When must
we force pages
to disk ?



Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

53RULE: FLUSH after COMMIT

NO-STEAL



54

Redo-Logging Rules

R1: If T modifies X, then both <T,X,v> and <COMMIT T> must be 
written to disk before FLUSH(X)

• Hence: FLUSHes are done late

NO-STEAL



55

Recovery with Redo Log
After system crash, run recovery manager 
• Step 1. Decide for each transaction T whether it is completed or 

not
• <START T>….<COMMIT T>….    = yes
• <START T>….<ABORT T>…….    = yes
• <START T>………………………   = no

• Step 2. Read log from the beginning, redo all updates of 
committed transactions

(as opposed to: Undo all modifications by incomplete transactions)

Again, this could be slow! Fix with checkpointing (later)



56

Recovery with Redo Log

<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>

Committed transactions: T2

Write v2 to X2 on disk

Do Nothing

Do Nothing

Do Nothing
Do Nothing

Crash !



57

Comparison Undo/Redo

• Undo logging:
• Data page FLUSHes must be done early
• If <COMMIT T> is seen, T definitely has written all its data to disk 

(hence, don’t need to undo)

• Redo logging
• Data page FLUSHes must be done late
• If <COMMIT T> is not seen, T definitely has not written any of its data 

to disk (hence there is no dirty data on disk)



58

Pro/Con Comparison Undo/Redo

• Undo logging: (Steal/Force)
• Pro: Less memory intensive: flush updated data pages as soon as log records 

are flushed, only then COMMIT. 
• Con: Higher latency: forcing all dirty buffer pages to be flushed prior to 

COMMIT can take a long time.

• Redo logging: (No Steal/No Force)
• Con: More memory intensive: cannot flush data pages unless COMMIT log 

has been flushed. 
• Pro: Lower latency: don’t need to wait until data pages are flushed to 

COMMIT



Buffer Management summary

Force

No
Force

No Steal Steal

Worst

Best

Performance
Implications

No Steal Steal

No REDO
(Also no ACID)

No UNDO UNDO

No REDO

UNDO
REDO

No UNDO
REDO

Logging/Recovery
Implications

Force

No
Force

Next, will talk UNDO logging (Force/Steal), REDO logging 
(No Steal/No Force), then finally UNDO-REDO (ARIES!) 



Write-Ahead Logging for UNDO/REDO

• Log: An ordered list of log records to allow REDO/UNDO
• Log record contains: 

• <TXID, pageID, old data, new data> 
• and additional control info (which we’ll see soon).

DB Log



Write-Ahead Logging for UNDO/REDO
• The Write-Ahead Logging Protocol:

1. Must force the log record for an update before the corresponding 
data page gets to the DB disk.

2. Must force all log records for a txn before commit.
• I.e. txn is not committed until all of its log records including its “commit” 

record are on the stable log.
• #1 (with UNDO info) helps guarantee Atomicity.
• #2 (with REDO info) helps guarantee Durability.
• This allows us to implement Steal/No-Force

DB Log








