Logical Database Design: Entity-Relation Models

Functional Dependencies Schema Normalization

> Alvin Cheung Aditya Parameswaran Reading: R & G Chapter 19

Steps in Database Design, cont

- **Requirements Analysis**
 - user needs; what must database do?
- **Conceptual Design**
 - high level description (often done w/ER model)
 - ORM encourages you to program here
- Logical Design
 - translate ER into DBMS data model Completed
 - ORMs often require you to help here too
- **Schema Refinement**
 - consistency, normalization
- Physical Design indexes, disk layout
- Security Design who accesses what, and how

Completed

You are here

What makes good schemas?

Relational Schema Design

Name	<u>SSN</u>	PhoneNumber	City
Fred	123-45-6789	510-555-1234	Berkeley
Fred	123-45-6789	510-555-6543	Berkeley
Joe	987-65-4321	908-555-2121	San Jose

One person may have multiple phones, but lives in only one city

Primary key is thus (SSN, PhoneNumber)

What is the problem with this schema?

Relational Schema Design

Name	<u>SSN</u>	PhoneNumber	City
Fred	123-45-6789	510-555-1234	Berkeley
Fred	123-45-6789	510-555-6543	Berkeley
Joe	987-65-4321	908-555-2121	San Jose

Anomalies:

- Redundancy = repeat data
- Update anomalies = what if Fred moves to "Oakland"?
- **Deletion anomalies** = what if Joe deletes his phone number?

Relation Decomposition

Break the relation into two:

	Name	SSN	PhoneNumb	ber	City	
	Fred	123-45-6789	510-555-123	34	Berkeley	
	Fred	123-45-6789	510-555-654	13	Berkeley	
	Joe	987-65-4321	908-555-212	21	San Jose	
				-		
A			, ſ	<u>SSI</u>	N	PhoneNumber
Name	<u>SSN</u>	City		123	-45-6789	510-555-1234
Fred	123-45-6789	Berkeley		123	-45-6789	510-555-6543
Joe	987-65-4321	San Jose		987	-65-4321	908-555-2121

Anomalies have gone:

- No more repeated data
- Easy to move Fred to "Oakland" (how?)
- Easy to delete all Joe's phone numbers (how?)

Relational Schema Design (or Logical Design) How do we do this systematically?

Berkeley

- Start with some relational schema
- Find out its *functional dependencies* (FDs)
- Use FDs to <u>normalize</u> the relational schema

Functional Dependencies (FDs)

Definition

Functional Dependencies (FDs)

An FD holds, or does not hold on an instance:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

 $\begin{array}{l} \mathsf{EmpID} \rightarrow \mathsf{Name, Phone, Position} \\ \mathsf{Position} \rightarrow \mathsf{Phone} \end{array}$

but not Phone \rightarrow Position

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876 ←	Salesrep
E1111	Smith	9876 ←	Salesrep
E9999	Mary	1234	Lawyer

Position \rightarrow Phone

EmpID	Name	Phone	Position
E0045	Smith	1234 →	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234 →	Lawyer

But not Phone \rightarrow Position

name \rightarrow color category \rightarrow department color, category \rightarrow price department \rightarrow price

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Red	Toys	49
Gizmo	Stationary	Green	Office-supp.	59

Which FD's hold?

Buzzwords

- FD holds or does not hold on an instance
- If we can be sure that every instance of R will be one in which a given FD is true, then we say that R satisfies the FD
- If we say that R satisfies an FD, we are stating a constraint on R

Why bother with FDs?

Name	<u>SSN</u>	PhoneNumber	City
Fred	123-45-6789	510-555-1234	Berkeley
Fred	123-45-6789	510-555-6543	Berkeley
Joe	987-65-4321	908-555-2121	San Jose

Anomalies:

- Redundancy = repeat data
- Update anomalies = what if Fred moves to "Oakland"?
- **Deletion anomalies** = what if Joe deletes his phone number?

An Interesting Observation

If all these FDs are true:

name \rightarrow color category \rightarrow department color, category \rightarrow price

Then this FD also holds:

name, category \rightarrow price

If we find out from application domain that a relation satisfies some FDs, it doesn't mean that we found all the FDs that it satisfies! There could be more FDs implied by the ones we have.

Finding New FDs: Armstrong's Axioms

- Suppose X, Y, Z are sets of attributes, then:
 - <u>*Reflexivity*</u>: If $X \supseteq Y$, then $X \to Y$
 - <u>Augmentation</u>: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 - <u>Transitivity</u>: If $X \to Y$ and $Y \to Z$, then $X \to Z$
- Sound and complete inference rules for FDs!
- Some additional rules (that follow from AA):
 - <u>Union</u>: If $X \to Y$ and $X \to Z$, then $X \to YZ$
 - <u>Decomposition</u>: If $X \to YZ$, then $X \to Y$ and $X \to Z$
 - See if you can prove these!

Closure of a set of Attributes

Given a set of attributes $A_1, ..., A_n$ The closure is the set of attributes B, notated $\{A_1, ..., A_n\}^+$,
s.t. $A_1, ..., A_n \rightarrow B$ Example:1. name \rightarrow color
2. category \rightarrow department
3. color, category \rightarrow price

Closures:

name⁺ = {name, color}
{name, category}⁺ = {name, category, color, department, price}
color⁺ = {color}

Closure Algorithm

X={
$$A_1, ..., A_n$$
}.ExampleRepeat until X doesn't change do:1if $B_1, ..., B_n \rightarrow C$ is a FD and $B_1, ..., B_n$ are all in X3thenadd C to X.

Example:

- 1. name \rightarrow color
- 2. category \rightarrow department
- 3. color, category \rightarrow price

{name, category}⁺ =
 { name, category, color, department, price }
Hence: name, category → color, department, price

Keys

- A superkey is a set of attributes A₁, ..., A_n s.t. for any other attribute B, we have A₁, ..., A_n → B
- A candidate key (or sometimes just key) is a minimal superkey
 - A superkey and for which no subset is a superkey

Computing (Super)Keys

- For all sets X, compute X⁺
- If X⁺ = [all attributes], then X is a superkey
- Try reducing to the minimal X's to get the candidate key

Product(name, price, category, color)

name, category \rightarrow price category \rightarrow color

What is the candidate key?

Product(name, price, category, color)

name, category \rightarrow price category \rightarrow color

What is the candidate key ? (name, category)+ = { name, category, price, color } Hence (name, category) is a candidate key

Key or Keys ?

We can we have more than one candidate key!

What are the candidate keys here?

Key or Keys ?

We can we have more than one candidate key!

What are the candidate keys here?

Eliminating Anomalies

Main idea:

- $X \rightarrow A$ is OK if X is a (super)key for the relation
 - A = all attributes in the relation
 - OK = no need to further decompose the relation
- $X \rightarrow A$ is not OK otherwise
 - Need to decompose the table, but how?
 - That's where *normalization* comes in!