
Functional Dependencies
and Schema Refinement II

Alvin Cheung
Aditya Parameswaran

R&G 19

Thanks for that…
• So we know a lot about FDs
• So what?

• Can they help with removing redundancy, update and deletion
anomalies?

• Yes! We use normalization to cast schemas into Normal Forms
(aka good schemas)

Normal Forms

First Normal Form = all attributes are atomic
Second Normal Form (2NF) = old and obsolete
Third Normal Form (3NF) = rarely preferred over BCNF
Fourth Normal Form (4NF) = unnecessary/complex

Boyce Codd Normal Form (BCNF)

4

Boyce-Codd Normal Form
A simple condition for removing redundancy/anomalies from relations:

A relation R is in BCNF if and only if:
Whenever there is a nontrivial FD: A1A2…An è B,
then A1A2…An is a super-key for R.

• Non-trivial means RHS is not a subset of LHS
• “Whenever a set of attributes of R is determining another attribute,

it should determine all attributes of R.”

Why does this make sense?

Say R(A, B, C) with AB as the key has an FD: AàC.
Then C is being repeated for multiple Bs

5

Example
Name SSN Phone Number

Jia 123-32-9931 (201) 555-1234
Jia 123-32-9931 (206) 572-4312
Marco 909-43-4486 (908) 464-0028
Marco 909-43-4486 (212) 555-4000

What are the dependencies?
SSN è Name

Is the left side a superkey?
No

Is it in BCNF?
No.

6

Decompose it into BCNF

SSN Name
123-32-9931 Jia
909-43-4486 Marco

SSN Phone Number

123-32-9931 (201) 555-1234
123-32-9931 (206) 572-4312
909-43-4486 (908) 464-0028
909-43-4486 (212) 555-4000

SSN è Name

Now is it in BCNF?

7

BCNF Decomposition
Find a dependency that violates the BCNF condition:

A , A , … A 1 2 n B , B , … B 1 2 m

AsOthers Bs

R2 R1

Heuristic : choose B , B , … B “as large as possible”
helps avoid unnecessarily fine-grained decomposition

1 2 m

Decompose:
Continue until
there are no
BCNF violations
left.

8

Example Decomposition

Name SSN Age EyeColor PhoneNum

Functional dependencies:
SSN è Name, Age, Eye Color

Person:

BCNF: Person1 (SSN, Name, Age, EyeColor),
Person2 (SSN, PhoneNum)

Example
Same example, slightly more complex.

Person (Name, SSN, Age, EyeColor, PhoneNum, Draftworthy)
• FD 1: SSN à Name, Age, EyeColor
• FD 2: Age à Draftworthy

Example
• Person (Name, SSN, Age, EyeColor, PhoneNum, Draftworthy)
• FD 1: SSN à Name, Age, EyeColor
• FD 2: Age àDraftworthy

• FD 1 and 2 imply SSN à Name, Age, EyeColor, Draftworthy
• Split based on this

• (SSN, Name, Age, EyeColor, Draftworthy)
• (SSN, PhoneNum)

• Split based on Age à Draftworthy
• (SSN, Name, Age, EyeColor)
• (Age, Draftworthy)
• (SSN, Phone Number)

• Will get same result if you apply in a different order (but not always!)

Example
• Movie (Title, Yr, StudioName, President, PresAddr)
• FD: Title, Yr è StudioName
• FD: StudioName è President
• FD: President è PresAddr

Example
• Movie (Title, Yr, StudioName, President, PresAddr)
• FD: Title, Yr è StudioName
• FD: StudioName è President
• FD: President è PresAddr
(Title, Yr, StudioName, President)
(President, PresAddr)
è
(Title, Yr, StudioName)
(StudioName, President)
(President, PresAddr)

Two-attribute relations
• Let A and B be the only two attributes of R

• Claim: R is in BCNF.

• Symmetric cases:
• If A è B is true, B è A is not:
• If B è A is true, A è B is not:

• If A è B is true, B è A is true:

Two-attribute relations
• Let A and B be the only two attributes of R

• Claim: R is in BCNF.

• If A è B is true, B è A is not:
• A à B does not violate BCNF

• If B è A is true, A è B is not:
• Symmetric

• If A è B is true, B è A is true:
• Both are keys, therefore neither violate BCNF

BCNF Decomposition: The Algorithm

Input: relation R, set S of FDs over R
1) Check if R is in BCNF, if not:

a) pick a violation FD f: A è B
b) compute A+
c) create R1 = A+, R2 = A union (R – A+)
d) compute all FDs over R1 and R2, using R and S.
e) repeat Step 1 for R1 and R2

2) Stop when all relations are BCNF or are two attributes

(Remember, two attribute relations are always in BCNF)

Q: Is BCNF Decomposition unique?
• R(SSN, netid, phone).
• FD1: SSN -> netid
• FD2: netid -> SSN
• Each of these two FDs violates BCNF.

Can you tell me two different BCNF decomp for R?
• Pick FD1 and decompose, you get:

• (SSN, netid); (SSN, phone).
• Pick FD2 and you get

• (netid, SSN); (netid, phone).

Properties of BCNF
• BCNF removes certain types of redundancies

• for examples of redundancy that it cannot remove, see "multi-valued
redundancy” (Addressed by 4NF, see textbook)

• BCNF decomposition avoids information loss
• You can construct the original relation instance from the decomposed

relations’ instances.
• How? What would the relational algebra exp look like?

• R(A, B, C) from R(A, B), R(B, C)
• Ans: Natural join
• Proof: in the textbook

Can we cheat?
• We saw that two-attribute relations are in BCNF.

• Why don’t we break any R(A,B,C,D,E) into R1(A,B); R2(B,C);
R3(C,D); R4(D,E)? Why bother with finding BCNF violations etc.?

• Turns out, this leads to information loss …

Example of the “easy decomposition”
• R = (A,B,C); decomposed into R1(A,B); R2(B,C)

A B C
1 2 3
4 2 6

A B
1 2
4 2

B C
2 3
2 6

Example of the “easy decomposition”
• R = (A,B,C); decomposed into R1(A,B); R2(B,C)

A B C
1 2 3
4 2 6

A B
1 2
4 2

B C
2 3
2 6

A B C
1 2 3
4 2 6
1 2 6
4 2 3

Nat.Join

We get back some “bogus tuples”!
Lossless decompositions (like BCNF)
don’t give bogus tuples.

Summary of Schema Refinement
• BCNF: each field contains data that cannot be inferred via FDs.

• ensuring BCNF is a good heuristic.

• Not in BCNF? Try decomposing into BCNF relations.

• Downside of BCNF: not all dependencies are preserved (some are
split across relations)
• TINSTAFL! If you want to preserve dependencies, you will have

redundancy
• Take a look at the textbook for these tradeoffs

