Parallel Query Processing

Parallelizing relational query operators

Alvin Cheung Aditya Parameswaran Reading: R & G Chapter 22.1-4

Parallelizing Relational Operators

- Joins
- Sort
- Aggregation
- Group by

Naïve parallel hash join R 🖂 S

- Phase 1: Shuffle R across machines using h_n
 - Parallel scan streaming tuples out to network
 - Build in memory hash table using h_r
 - Wait for hash table building to finish
- Phase 2: Stream probing relation S across machines using h_n
 - Probe hash table for R tuple matches
 - Writing joined tuples to disk is independent, hence parallel
- Note: there is a variation that has *no waiting*: both tables stream
 - Wilschut and Apers' "Symmetric" or "Pipeline" hash join
 - Requires more memory space
- What if we don't have enough memory to build full hash table on R?

Parallel Grace Hash Join Pass 1

• Pass 1 is like hashing earlier

Parallel Grace Hash Join Pass 1 cont

• But do it 2x: once for each relation being joined

Parallel Grace Hash Join Pass 2

- Pass 2 is local Grace Hash Join per node
 - Complete independence across nodes

Parallel Grace Hash Join

- Pass 1: parallel streaming
 - Stream building and probing tables through shuffle/partition
- Pass 2 is local Grace Hash Join per node
 - Complete independence across nodes in Pass 2
- Near-perfect speed-up, scale-up!
- Every component works at its top speed
 - Only waiting is for Pass 1 to end.
- Note: there is a variant that has no waiting
 - Urhan's Xjoin, a variant of symmetric hash

Parallel Sorting Pass 0

- Pass 0: shuffle data across machines
 - streaming out to network as it is scanned
 - which machine for this record?
 Split on value range (e.g. [-∞,10], [11,100], [101, ∞]).

Parallel Sorting Passes 1-n

- Receivers proceed with pass 0 as the data streams in
- Passes 1–n done independently as in single-node sorting
- A Wrinkle: How to ensure ranges have the same #pages?
 - i.e. avoid data skew?

Range partitioning

- Goal: equal frequency per machine
- Note: ranges often don't divide x axis evenly
- How to choose?

Range partitioning cont.

- Would be easy if data small
- In general, can sample the input relation prior to shuffling, pick splits based on sample
- Note: Random sampling can be tricky to implement in a query pipeline; simpler if you materialize first.

How to sample a database table? Advanced topic, we will not discuss in this class.

Parallel Sort-Merge Join

- Pass 0 .. n-1 are like parallel sorting above
- Note: this picture is a 2-pass sort (n=1); this is pass 0

Parallel Sort-Merge Join Pass 0...n-1

- Pass 0 .. n-1 are like parallel sorting above
 - But do it 2x: once for each relation, with same ranges
 - Note: this picture is a 2-pass sort (n=1); this is pass 0

Pass n

- Pass 0 .. n-1 are like parallel sorting above
 - But do it 2x: once for each relation, with same ranges
- Pass n: merge join partitions locally on each node

Parallel Aggregates

Hierarchical aggregation

- For each aggregate function, need a global/local decomposition:
 - $sum(S) = \Sigma \Sigma (s)$
 - count = Σ count (s)
 - $avg(S) = (\Sigma \Sigma (s)) / \Sigma count (s)$
 - etc...

Parallel GroupBy

Naïve Hash Group By

• E.g. SELECT SUM(price) group by cart;

Parallel GroupBy, Cont.

- Naïve Hash Group By
 - Local aggregation: in hash table keyed by group key k_i keep local agg_i
 - For example, k is major, agg is (avg(gpa), count(*))
 - Shuffle local aggregates by a hash function $h_p(k_i)$
 - Compute global aggregates for each key k_i

Parallel Aggregates/GroupBy Challenge!

- Exercise:
 - Figure out parallel 2-pass GraceHash-based scheme to handle # large of groups
 - Figure out parallel Sort-based scheme

Joins: Bigger picture

- Symmetric shuffle
 - What we did so far
- Alternatives:
 - Asymmetric shuffle
 - Broadcast join
 - Pipeline (non-blocking) join

Join: Asymmetric / One-sided shuffle

• If R already suitably partitioned, just partition S, then run local join at every node and union results.

"Broadcast" Join

- If R is small, send it to all nodes that have a partition of S.
- Do a local join at each node (using any algorithm) and union results.

What are "pipeline breakers"?

- Sort
 - Hence sort-merge join can't start merging until sort is complete
- Hash build
 - Hence Grace hash join can't start probing until hashtable is built
- Is there a join scheme that pipelines?

Symmetric (Pipeline) Hash Join

Single-phase, streaming

- Each node allocates two hash tables, one for each side
- Upon arrival of a tuple of R:
 - Build into R hashtable by join key
 - Probe into S hashtable for matches and output any that are found
- Upon arrival of a tuple of S:
 - Symmetric to R!

Symmetric (Pipeline) Hash Join cont

- Why does it work?
 - Each output tuple is generated exactly once: when the second part arrives
- Streaming!
 - Can always pull another tuple from R or S, build, and probe for outputs
 - Useful for Stream query engines!

Parallel DBMS Summary

- Parallelism natural to query processing:
 - Both pipeline and partition
- Shared-Nothing vs. Shared-Mem vs. Shared Disk
 - Shared-mem easiest SW, costliest HW.
 - Doesn't scale indefinitely
 - Shared-nothing cheap, scales well, harder to implement.
 - Shared disk a middle ground
 - For updates, introduces icky stuff related to concurrency control
- Intra-op, Inter-op, & Inter-query parallelism all possible.

Parallel DBMS Summary, Part 2

- Most DB operations can be done partition-parallel
 - Sort. Hash.
 - Sort-merge join, hash-join.
- Complex plans.
 - Allow for pipeline-parallelism, but sorts, hashes block the pipeline.
 - Partition parallelism achieved via bushy trees.

Parallel DBMS Summary, Part 3

- What about running transactions on parallel databases?
 - Distributed locks?
 - Distributed deadlock detection?
 - We need new protocols
- More on this in subsequent lectures