
Parallel Query Processing
Parallelizing relational query operators

Alvin Cheung
Aditya Parameswaran

Reading: R & G Chapter 22.1-4

Slide Deck Title

Parallelizing Relational Operators
• Joins
• Sort
• Aggregation
• Group by

Slide Deck Title

Naïve parallel hash join R ⨝ S
• Phase 1: Shuffle R across machines using hn

• Parallel scan streaming tuples out to network
• Build in memory hash table using hr

• Wait for hash table building to finish
• Phase 2: Stream probing relation S across machines using hn

• Probe hash table for R tuple matches
• Writing joined tuples to disk is independent, hence parallel

• Note: there is a variation that has no waiting: both tables stream
• Wilschut and Apers’ “Symmetric” or “Pipeline” hash join
• Requires more memory space

• What if we don’t have enough memory to build full hash table
on R?

hn

hr

Slide Deck Title

Parallel Grace Hash Join Pass 1

• Pass 1 is like hashing earlier
hp

R

R

R

hn

Slide Deck Title

Parallel Grace Hash Join Pass 1 cont
• Pass 1 is like hashing above
• But do it 2x: once for each relation being joined

R

R

R

hn
S

S

S

hp

Slide Deck Title

Parallel Grace Hash Join Pass 2
• Pass 2 is local Grace Hash Join per node
• Complete independence across nodes

hrR

S

R

S

R

S

R ⨝ S

R ⨝ S

R ⨝ S

R

R

R

hn

S

S

S

hp

Slide Deck Title

Parallel Grace Hash Join
• Pass 1: parallel streaming

• Stream building and probing tables through shuffle/partition
• Pass 2 is local Grace Hash Join per node

• Complete independence across nodes in Pass 2
• Near-perfect speed-up, scale-up!
• Every component works at its top speed

• Only waiting is for Pass 1 to end.

• Note: there is a variant that has no waiting
• Urhan’s Xjoin, a variant of symmetric hash

Slide Deck Title

Parallel Sorting Pass 0
• Pass 0: shuffle data across machines
• streaming out to network as it is scanned
• which machine for this record?

Split on value range (e.g. [-∞,10], [11,100], [101, ∞]).
range [-∞,10]

[11,100]

[101, ∞]

Slide Deck Title

Parallel Sorting Passes 1-n
• Receivers proceed with pass 0 as the data streams in
• Passes 1–n done independently as in single-node sorting
• A Wrinkle: How to ensure ranges have the same #pages?

• i.e. avoid data skew?

range
[-∞,10]

[11,100]

[101, ∞]

Slide Deck Title

Range partitioning
• Goal: equal frequency per machine
• Note: ranges often don’t divide x

axis evenly
• How to choose?

Slide Deck Title

Range partitioning cont.
• Would be easy if data small
• In general, can sample the

input relation prior to
shuffling, pick splits based
on sample

• Note: Random sampling can be
tricky to implement in a query
pipeline; simpler if you materialize
first.

How to sample a database table?
Advanced topic, we will not discuss in this class.

Slide Deck Title

Parallel Sort-Merge Join
• Pass 0 .. n-1 are like parallel sorting above
• Note: this picture is a 2-pass sort (n=1); this is pass 0

R

R

R

range

Slide Deck Title

Parallel Sort-Merge Join Pass 0…n-1
• Pass 0 .. n-1 are like parallel sorting above
• But do it 2x: once for each relation, with same ranges
• Note: this picture is a 2-pass sort (n=1); this is pass 0

R

R

R

range

S

S

S

Slide Deck Title

Pass n
• Pass 0 .. n-1 are like parallel sorting above
• But do it 2x: once for each relation, with same ranges

• Pass n: merge join partitions locally on each node

S
R

R ⨝ S

S
R

R ⨝ S

S
R

R ⨝ S

R

R

R

range

S

S

S

Slide Deck Title

Parallel Aggregates
• Hierarchical aggregation
• For each aggregate function, need a global/local decomposition:

• sum(S) = S S (s)
• count = S count (s)
• avg(S) = (S S (s)) / S count (s)
• etc...

S=17

S=5

S=6

S=6

2,3

1,5

4,2

Slide Deck Title

Parallel GroupBy
• Naïve Hash Group By

• Local aggregation: in hash table keyed by group key ki keep local aggi

• E.g. SELECT SUM(price) group by cart;

S S S S
S S S S
S S S S
S S S S

Slide Deck Title

Parallel GroupBy, Cont.
• Naïve Hash Group By

• Local aggregation: in hash table keyed by group key ki keep local aggi

• For example, k is major, agg is (avg(gpa), count(*))
• Shuffle local aggregates by a hash function hp(ki)
• Compute global aggregates for each key ki

hp

Slide Deck Title

Parallel Aggregates/GroupBy Challenge!
• Exercise:

• Figure out parallel 2-pass GraceHash-based scheme to handle # large of groups
• Figure out parallel Sort-based scheme

hp

Slide Deck Title

Joins: Bigger picture

• Symmetric shuffle
• What we did so far

• Alternatives:
• Asymmetric shuffle
• Broadcast join
• Pipeline (non-blocking) join

Slide Deck Title

Join: Asymmetric / One-sided shuffle
• If R already suitably partitioned, just partition S,

then run local join at every node and union results.
R

R

R

S

S

S

R ⨝ S

R ⨝ S

R ⨝ S

Slide Deck Title

“Broadcast” Join
• If R is small, send it to all nodes that have a partition of S.
• Do a local join at each node (using any algorithm) and union

results.

input S

input R

Slide Deck Title

What are “pipeline breakers”?
• Sort
• Hence sort-merge join can’t start merging until sort is

complete

• Hash build
• Hence Grace hash join can’t start probing until hashtable

is built

• Is there a join scheme that pipelines?

Slide Deck Title

Symmetric (Pipeline) Hash Join
• Single-phase, streaming

• Each node allocates two hash tables, one for each side

• Upon arrival of a tuple of R:
• Build into R hashtable by join key
• Probe into S hashtable for matches and output any that are found

• Upon arrival of a tuple of S:
• Symmetric to R!

R

S

Slide Deck Title

Symmetric (Pipeline) Hash Join cont
• Why does it work?

• Each output tuple is generated exactly once: when the second part
arrives

• Streaming!

• Can always pull another tuple from R or S, build, and probe for
outputs

• Useful for Stream query engines!

Slide Deck Title

Parallel DBMS Summary
• Parallelism natural to query processing:
• Both pipeline and partition

• Shared-Nothing vs. Shared-Mem vs. Shared Disk
• Shared-mem easiest SW, costliest HW.

• Doesn’t scale indefinitely
• Shared-nothing cheap, scales well, harder to implement.
• Shared disk a middle ground

• For updates, introduces icky stuff related to concurrency
control

• Intra-op, Inter-op, & Inter-query parallelism all possible.

Slide Deck Title

Parallel DBMS Summary, Part 2

• Most DB operations can be done partition-parallel
• Sort. Hash.
• Sort-merge join, hash-join.

• Complex plans.
• Allow for pipeline-parallelism, but sorts, hashes

block the pipeline.
• Partition parallelism achieved via bushy trees.

Slide Deck Title

Parallel DBMS Summary, Part 3

• What about running transactions on parallel
databases?
• Distributed locks?
• Distributed deadlock detection?
• We need new protocols

• More on this in subsequent lectures

