Parallel Query Processing
Parallelizing relational query operators

Alvin Cheung
Aditya Parameswaran

Reading: R & G Chapter 22.1-4

Berkeley

cs186

Parallelizing Relational Operators rerkgls%y l

+ Joins

+ Sort

+ Aggregation
* Group by

Naive parallel hash join R D><xi S

Berkeley
_ cs186

Phase 1: Shuffle R across machines using h,

* Parallel scan streaming tuples out to network h

* Build in memory hash table using h, h, :

« Wait for hash table building to finish
Phase 2: Stream probing relation S across machines using h,

* Probe hash table for R tuple matches

* Writing joined tuples to disk is independent, hence parallel
Note: there is a variation that has no waiting: both tables stream

* Wilschut and Apers’ “Symmetric” or “Pipeline” hash join .

* Requires more memory space

What if we don’t have enough memory to build full hash table
on R?

Parallel Grace Hash Join Pass 1 merks}g%y

» Pass 1 is like hashing earlier

Parallel Grace Hash Join Pass 1 cont merkglgy

» Pass 1 is like hashing above
* But do it 2x: once for each relation being joined

Parallel Grace Hash Join Pass 2 M
+ Pass 2 is local Grace Hash Join per node

« Complete independence across nodes
hp

Parallel Grace Hash Join rerk&ls%y l

* Pass 1: parallel streaming
« Stream building and probing tables through shuffle/partition

Pass 2 is local Grace Hash Join per node

« Complete independence across nodes in Pass 2
Near-perfect speed-up, scale-up!

Every component works at its top speed

* Only waiting is for Pass 1 to end.

Note: there is a variant that has no waiting
* Urhan’s Xjoin, a variant of symmetric hash

Parallel Sorting Pass O g_—Berkeley l

 Pass 0: shuffle data across machines
» streaming out to network as it is scanned

* which machine for this record?
Split on value range (e.g. [-=,10], [11,100], [101, oo]).

range

[_00110]

[11,100]

[101, o]

Parallel Sorting Passes 1-n rerk&?ﬁy l

* Receivers proceed with pass 0 as the data streams in

* Passes 1-n done independently as in single-node sorting

* A Wrinkle: How to ensure ranges have the same #pages?
* i.e. avoid data skew?

[-00110]

[11,100]

-@ [101, <]

2

lange partitioning

Goal: equal frequency per machine

Note: ranges often don’t divide x
axis evenly

How to choose?

Frequency

1500 2000
1 |

1000
1

500
|

0
L

(Berkeley !

2

lange partitioning cont.

* Would be easy if data small

2000

1500

* In general, can sample the
input relation prior to
shuffling, pick splits based
on sample

Frequency
1000

500

* Note: Random sampling can be o
tricky to implement in a query
pipeline; simpler if you materialize
first.

How to sample a database table?
Advanced topic, we will not discuss in this class.

Parallel Sort-Merge Join r“k&lls%y I

* Pass 0 .. n-1 are like parallel sorting above
» Note: this picture is a 2-pass sort (n=1); this is pass 0

Parallel Sort-Merge Join Pass 0...n-1 merkdey

* Pass 0 .. n-1 are like parallel sorting above
« But do it 2x: once for each relation, with same ranges
* Note: this picture is a 2-pass sort (n=1); this is pass 0

Pass n merkg}s =

* Pass 0 .. n-1 are like parallel sorting above
« But do it 2x: once for each relation, with same ranges

« Pass n: merge join partitions locally on each node

RS

RS

5 — ?_
— RIS
S_

Parallel Aggregates ﬂ_—Berkeley (

* Hierarchical aggregation
* For each aggregate function, need a global/local decomposition:
c sum(S) =X X (s)
« count = X count (s)
 avg(S)=(Z X (s))/ Z count (s)
- etc...

Parallel GroupBy ‘:erkeley I

* Naive Hash Group By
* Local aggregation: in hash table keyed by group key k; keep local agg;
« E.g. SELECT SUM(price) group by cart;

Parallel GroupBy, Cont. rerkeley l

* Naive Hash Group By
* Local aggregation: in hash table keyed by group key k; keep local agg;
« For example, k is major, agg is (avg(gpa), count(*))
- Shuffle local aggregates by a hash function h(k)
« Compute global aggregates for each key k;

Parallel Aggregates/GroupBy Challenge! merkglgy

Exercise:
* Figure out parallel 2-pass GraceHash-based scheme to handle # large of groups
* Figure out parallel Sort-based scheme

Joins: Bigger picture ﬂL—Berkgllsgy I

* Symmetric shuffle
* What we did so far

* Alternatives:
* Asymmetric shuffle
* Broadcast join
* Pipeline (non-blocking) join

Join: Asymmetric / One-sided shuffle merkeley

* If R already suitably partitioned, just partition S,
then run local join at every node and union results.

R>1S

R>1S

0

e

Broadcast” Join ‘L—Berkgllsgy [

« If Ris small, send it to all nodes that have a partition of S.

* Do alocal join at each node (using any algorithm) and union
results.

input R

vy

input S

What are “pipeline breakers™? rerkg}g l

e Sort

* Hence sort-merge join can’t start merging until sort is
complete

- Hash build

* Hence Grace hash join can’t start probing until hashtable
IS built

* |s there a join scheme that pipelines?

Symmetric (Pipeline) Hash Join m

« Single-phase, streaming

 Each node allocates two hash tables, one for each side

« Upon arrival of a tuple of R:
« Build into R hashtable by join key
* Probe into S hashtable for matches and output any that are found

« Upon arrival of a tuple of S:
« Symmetric to R!

Symmetric (Pipeline) Hash Join cont m

« Why does it work?

« Each output tuple is generated exactly once: when the second part
arrives

« Streaming!

« Can always pull another tuple from R or S, build, and probe for
outputs

« Useful for Stream query engines!

Parallel DBMS Summary rgerkeley l

» Parallelism natural to query processing:
» Both pipeline and partition

» Shared-Nothing vs. Shared-Mem vs. Shared Disk
« Shared-mem easiest SW, costliest HW.

« Doesn’t scale indefinitely
« Shared-nothing cheap, scales well, harder to implement.

« Shared disk a middle ground

* For updates, introduces icky stuff related to concurrency
control

* Intra-op, Inter-op, & Inter-query parallelism all possible.

Parallel DBMS Summary, Part 2 rBerkeley l

* Most DB operations can be done partition-parallel
» Sort. Hash.
* Sort-merge join, hash-join.

« Complex plans.

 Allow for pipeline-parallelism, but sorts, hashes
block the pipeline.

 Partition parallelism achieved via bushy trees.

Parallel DBMS Summary, Part 3 rerkeley l

* What about running transactions on parallel
databases?

* Distributed locks?
* Distributed deadlock detection?
* We need new protocols

* More on this in subsequent lectures

