
Distributed Transactions
with Two-Phase Commit II
Recovery and Locking

Alvin Cheung
Aditya Parameswaran

R&G - Chapter 20

Slide Deck Title

One More Time, With Logging
• Phase 1
• Coordinator tells participants to “prepare”
• Participants generate prepare/abort record
• Participants flush prepare/abort record
• Participants respond with yes/no votes
• Coordinator generates commit record
• Coordinator flushes commit record

C(T1)

Prepare(T1)

Log tail Log tail

Coordinator for T1T1 Participant

Slide Deck Title

One More Time, With Logging, Part 2
• Phase 1
• Coordinator tells participants to “prepare”
• Participants generate prepare/abort record
• Participants flush prepare/abort record
• Participants respond with yes/no votes
• Coordinator generates commit record
• Coordinator flushes commit record

C(T1)

Prepare(T1)

Log tail Log tail

Coordinator for T1T1 Participant

Slide Deck Title

One More Time, With Logging, Part 3
• Phase 1
• Coordinator tells participants to “prepare”
• Participants generate prepare/abort record
• Participants flush prepare/abort record
• Participants respond with yes/no votes
• Coordinator generates commit record
• Coordinator flushes commit record

C(T1)

Log tail

Prepare(T1)

Log tail
prepare(T1)

Coordinator for T1T1 Participant

Slide Deck Title

One More Time, With Logging, Part 4
• Phase 1
• Coordinator tells participants to “prepare”
• Participants generate prepare/abort record
• Participants flush prepare/abort record
• Participants respond with yes/no votes
• Coordinator generates commit record
• Coordinator flushes commit record

C(T1)

Log tail

yes(T1)

Log tail

prepare(T1)

Coordinator for T1T1 Participant

Slide Deck Title

One More Time, With Logging, Part 5
• Phase 1
• Coordinator tells participants to “prepare”
• Participants generate prepare/abort record
• Participants flush prepare/abort record
• Participants respond with yes/no votes
• Coordinator generates commit record
• Coordinator flushes commit record

C(T1)

Log tail

yes(T1)

Log tail

prepare(T1)

Coordinator for T1T1 Participant

Slide Deck Title

One More Time, With Logging, Part 6
• Phase 1
• Coordinator tells participants to “prepare”
• Participants generate prepare/abort record
• Participants flush prepare/abort record
• Participants respond with yes/no votes
• Coordinator generates commit record
• Coordinator flushes commit record

C(T1)

Log tail

yes(T1)

Log tail

prepare(T1)

Coordinator for T1T1 Participant

Slide Deck Title

One More Time, With Logging, Part 7
• Phase 1
• Coordinator tells participants to “prepare”
• Participants generate prepare/abort record
• Participants flush prepare/abort record
• Participants respond with yes/no votes
• Coordinator generates commit record
• Coordinator flushes commit record

C(T1)

Log tailLog tail

prepare(T1)

commit(T1)

Coordinator for T1T1 Participant

Slide Deck Title

One More Time, With Logging, Part 8
• Phase 1
• Coordinator tells participants to “prepare”
• Participants generate prepare/abort record
• Participants flush prepare/abort record
• Participants respond with yes/no votes
• Coordinator generates commit record
• Coordinator flushes commit record

C(T1)

prepare(T1)

Log tailLog tail
commit(T1)

Coordinator for T1T1 Participant

Slide Deck Title

One More Time, With Logging, Part 9
• Phase 1
• Coordinator tells participants to “prepare”
• Participants generate prepare/abort record
• Participants flush prepare/abort record
• Participants respond with yes/no votes
• Coordinator generates commit record
• Coordinator flushes commit record

C(T1)

prepare(T1) commit(T1)

Log tailLog tail

Coordinator for T1T1 Participant

Slide Deck Title

One More Time, With Logging, Part 10
• Phase 2:
• Coordinator broadcasts result of vote
• Participants make commit/abort record
• Participants flush commit/abort record
• Participants respond with Ack
• Coordinator generates end record
• Coordinator flushes end record

C(T1)

prepare(T1) commit(T1)

Commit(T1)

Log tailLog tail

Coordinator for T1T1 Participant

Slide Deck Title

One More Time, With Logging, Part 11
• Phase 2:
• Coordinator broadcasts result of vote
• Participants make commit/abort record
• Participants flush commit/abort record
• Participants respond with Ack
• Coordinator generates end record
• Coordinator flushes end record

C(T1)

prepare(T1) commit(T1)

Commit(T1)

Log tailLog tail

Coordinator for T1T1 Participant

Slide Deck Title

One More Time, With Logging, Part 12
• Phase 2:
• Coordinator broadcasts result of vote
• Participants make commit/abort record
• Participants flush commit/abort record
• Participants respond with Ack
• Coordinator generates end record
• Coordinator flushes end record

C(T1)

og tailLog tail

prepare(T1) commit(T1)

Commit(T1)

Coordinator for T1T1 Participant

Slide Deck Title

One More Time, With Logging, Part 13
• Phase 2:
• Coordinator broadcasts result of vote
• Participants generate commit/abort record
• Participants flush commit/abort record
• Participants respond with Ack
• Coordinator generates end record
• Coordinator flushes end record

C(T1)

prepare(T1) commit(T1)
Commit(T1)

Log tailLog tail

Coordinator for T1T1 Participant

Slide Deck Title

One More Time, With Logging, Part 14
• Phase 2:
• Coordinator broadcasts result of vote
• Participants generate commit/abort record
• Participants flush commit/abort record
• Participants respond with Ack
• Coordinator generates end record
• Coordinator flushes end record

C(T1)

prepare(T1) commit(T1)
Commit(T1)

Ack(T1a)

Log tailLog tail

Coordinator for T1T1 Participant

Slide Deck Title

One More Time, With Logging, Part 15
• Phase 2:
• Coordinator broadcasts result of vote
• Participants generate commit/abort record
• Participants flush commit/abort record
• Participants respond with Ack
• Coordinator generates end record
• Coordinator flushes end record

C(T1)

prepare(T1) commit(T1)
Commit(T1)

Ack(T1a)

Log tailLog tail

Coordinator for T1T1 Participant

Slide Deck Title

One More Time, With Logging, Part 16
• Phase 2:
• Coordinator broadcasts result of vote
• Participants generate commit/abort record
• Participants flush commit/abort record
• Participants respond with Ack
• Coordinator generates end record
• Coordinator flushes end record

C(T1)

Log tailLog tail

prepare(T1) commit(T1)
Commit(T1)

end(T1)

Coordinator for T1T1 Participant

Slide Deck Title

One More Time, With Logging, Part 17
• Phase 2:
• Coordinator broadcasts result of vote
• Participants generate commit/abort record
• Participants flush commit/abort record
• Participants respond with Ack
• Coordinator generates end record
• Coordinator flushes end record

C(T1)

prepare(T1) commit(T1)
Commit(T1) end(T1)

Log tailLog tail

Coordinator for T1T1 Participant

Slide Deck Title

Time

2PC In a Nutshell

Coordinator
Log

Participant
Log Prepare

Vote Yes/No

Commit/Abort

Ack on commit

prepare* or abort*
(with coord ID)

commit* or abort*
(commit includes all

participant IDs)

commit* or abort*

end
(on commit)

NOTE
asterisk*: wait for log flush

before sending next msg

RECOVERY AND 2PC

Slide Deck Title

Failure Handling
• Assume everybody recovers eventually

• Big assumption!
• Depends on WAL (and short downtimes)

• Coordinator notices a Participant is down?
• If participant hasn’t voted yet, coordinator aborts transaction
• If waiting for a commit Ack, hand to “recovery process”

• Participant notices Coordinator is down?
• If it hasn’t yet logged prepare, then abort unilaterally
• If it has logged prepare, hand to “recovery process”

• Note
• Thinking a node is “down” may be incorrect!

Slide Deck Title

Integration with ARIES Recovery
• On recovery
• Assume there’s a “Recovery Process” at each node
• It will be given tasks to do by the Analysis phase of

ARIES
• These tasks can run in the background (asynchronously)

• Note: multiple roles on a single node
• Coordinator for some xacts, Participant for others

Slide Deck Title

How Does Recovery Process Work?
• Coordinator recovery process gets inquiry from a

“prepared” participant
• If transaction table at coordinator says

aborting/committing
• send appropriate response and continue protocol on both

sides
• If transaction table at coordinator says nothing: send

ABORT
• Only happens if coordinator had also crashed before

writing commit/abort
• Inquirer does the abort on its end

Slide Deck Title

Time

2PC In a Nutshell

Coordinator
Log

Participant
Log Prepare

Vote Yes/No

Commit/Abort

Ack on commit

prepare* or abort*
(with coord ID)

commit* or abort*
(commit includes all

participant IDs)

commit* or abort*

end
(on commit)

NOTE
asterisk*: wait for log flush

before sending next msg

Slide Deck Title

Time

2PC In a Nutshell

Coordinator
Log

Participant
Log Prepare

Vote Yes/No

Commit/Abort

Ack on commit

prepare* or abort*
(with coord ID)

commit* or abort*
(commit includes all

participant IDs)

commit* or abort*

end
(on commit)

NOTE
asterisk*: wait for log flush

before sending next msg

Crash!

Crash!

Slide Deck Title

Recovery: Think it through
• What happens when coordinator recovers?
• With “commit” and “end”? Nothing
• With just “commit”? Rerun Phase 2!
• With “abort”? Nothing (Presumed Abort)

• What happens when participant recovers:
• With no prepare/commit/abort? Nothing (Presumed

Abort)
• With “prepare” & “commit”? Send Ack to coordinator.
• With just “prepare”? Send inquiry to Coordinator
• With “abort”? Nothing (Presumed Abort)

Commit iff coordinator
logged a commit

Slide Deck Title

2PC + 2PL
• Ensure point-to-point messages are densely ordered

• 1,2,3,4,5…
• Dense per (sender/receiver/XID)
• Receiver can detect anything missing or out-of-order
• Receiver buffers message k+1 until [1..k] received

• Commit:
• When a participant processes Commit request, it has all the locks it needs
• Flush log records and drop locks atomically

• Abort:
• Its safe to abort autonomously, locally: no cascade.
• Log appropriately to 2PC (presumed abort in our case)
• Perform local Undo, drop locks atomically

Slide Deck Title

Availability Concerns
• What happens while a node is down?

• Other nodes may be in limbo, holding locks
• So certain data is unavailable
• This may be bad...

• Dead Participants? Respawned by coordinator
• Recover from log
• And if the old participant comes back from the dead, just ignore it and tell it

to recycle itself
• Dead Coordinator?

• This is a problem!
• 3-Phase Commit was an early attempt to solve it
• Paxos Commit provides a more comprehensive solution

• Gray+Lamport paper! Out of scope for this class.

Slide Deck Title

Summing Up
• Distributed Databases

• A central aspect of Distributed Systems
• Partitioning provides Scale-Up
• Can also partition lock tables and logs
• But need to do some global coordination:

• Deadlock detection: easy
• Commit: trickier

• Two-phase commit is a classic distributed consensus protocol
• Logging/recovery aspects unique:

• many distributed protocols gloss over
• But 2PC is unavailable on any single failure
• This is bad news for scale-up,

• because odds of failure go up with #machines
• Paxos Commit (Gray+Lamport) addresses that problem

