
NoSQL I
Motivations and Data Model

Alvin Cheung
Aditya Parameswaran

Slide Deck Title

Two Classes of Relational Database Apps

• OLTP (Online Transaction Processing)
• Queries are simple lookups: 0 or 1 join

E.g., find customer by ID and their orders
• Many updates. E.g., insert order, update payment
• Consistency is critical: we need transactions

• OLAP (Online Analytical Processing)
• aka “Decision Support”
• Queries have many joins, and group-by’s

E.g., sum revenues by store, product, clerk, date
• No updates

Slide Deck Title

NoSQL Motivation
• Originally motivated by Web 2.0 applications

• E.g., Facebook, Amazon, Instagram, etc
• Startups need to scaleup from 10 to 107 clients quickly

• Needed: very large scale OLTP workloads
• Give up on consistency, give up OLAP
• NoSQL: reduce functionality

• Simpler data model
• Very restricted updates

Slide Deck Title

Structuring RDBMS Apps: “Serverless”

SQLite:
• One data file
• One user
• One DBMS application

• Consistency is easy
• But only a limited number of

scenarios work with such model

User

DBMS
Application

(SQLite)

File

Desktop

Data file

Disk

Slide Deck Title

Structuring RDBMS Apps: Client-Server

• One server running the database
• Many clients, connecting via the ODBC or JDBC

(Java Database Connectivity) protocol

Server Machine

Connection (JDBC, ODBC)

Client
Applications

DB Server

File 1

File 2

File 3

Slide Deck Title

Structuring RDBMS Apps: Client-Server

• One server running the database
• Many clients, connecting via the ODBC or JDBC

(Java Database Connectivity) protocol

Server Machine

Connection (JDBC, ODBC)

Client
Applications

Many users and apps
Consistency is harder à

transactions

DB Server

File 1

File 2

File 3

Slide Deck Title

Client-Server
• One server that runs the DBMS (or RDBMS):
• Your own desktop, or
• Some beefy system, or
• A cloud service (AWS, SQL Azure)

Slide Deck Title

Client-Server
• One server that runs the DBMS (or RDBMS):
• Your own desktop, or
• Some beefy system, or
• A cloud service (SQL Azure)

• Many clients run apps and connect to DBMS
• Microsoft’s Management Studio (for SQL Server), or
• psql (for postgres)
• Your Java/C++/Python/etc program

Slide Deck Title

Client-Server
• One server that runs the DBMS (or RDBMS):
• Your own desktop, or
• Some beefy system, or
• A cloud service (SQL Azure)

• Many clients run apps and connect to DBMS
• Microsoft’s Management Studio (for SQL Server), or
• psql (for postgres)
• Your Java/C++/Python/etc program

• Clients “talk” to server using JDBC/ODBC protocol

Slide Deck Title

Web Apps: 3 Tier

DB Server

File 1

File 2

File 3

Browser

Slide Deck Title

Web Apps: 3 Tier

DB Server

File 1

File 2

File 3
App+Web Server

Connection
(e.g., JDBC)

HTTP/SSL

Browser

Slide Deck Title

Web Apps: 3 Tier

DB Server

File 1

File 2

File 3
App+Web Server

Web-based applications

Connection
(e.g., JDBC)

HTTP/SSL

Browser

Slide Deck Title

Web Apps: 3 Tier

DB Server

File 1

File 2

File 3

App+Web Server

Connection
(e.g., JDBC)

HTTP/SSL
App+Web Server

App+Web Server

Web-based applications

Slide Deck Title

Web Apps: 3 Tier

DB Server

File 1

File 2

File 3

Why not replicate DB server?

App+Web Server

Connection

(e.g., JDBC)

HTTP/SSL
App+Web Server

App+Web Server

Web-based applications

Replicate

App server

for scaleup

Slide Deck Title

Web Apps: 3 Tier

DB Server

File 1

File 2

File 3

Why not replicate DB server?
Consistency!

App+Web Server

Connection
(e.g., JDBC)

HTTP/SSL
App+Web Server

App+Web Server

Web-based applications

Replicate
App server
for scaleup

Slide Deck Title

Replicating the Database

• Two basic approaches:
• Scale up through partitioning – “sharding”
• Scale up through replication

• Consistency is much harder to enforce

Slide Deck Title

Scale Through Partitioning
• Partition the database across many machines in a cluster

• Database now fits in main memory
• Queries spread across these machines

• Can increase throughput
• Easy for writes but reads become expensive!

Application
updates here May also

update here
Three partitions

Slide Deck Title

Scale Through Replication
• Create multiple copies of each database partition
• Spread queries across these replicas
• Can increase throughput and lower latency
• Can also improve fault-tolerance
• Easy for reads but writes become expensive!

App 1
updates
here only

App 2
updates
here onlyThree replicas

Slide Deck Title

Relational Model à NoSQL
• Relational DB: difficult to replicate/partition. E.g.,

Supplier(sno,…),Part(pno,…),Supply(sno,pno)

• Partition: we may be forced to join across servers
• Replication: local copy has inconsistent versions
• Consistency is hard in both cases (why?)

• NoSQL: simplified data model
• Given up on functionality
• Application must now handle joins and consistency

Slide Deck Title

Chem 1A
• Relational DB

• Atomicity
• Consistency
• Isolation
• Durability

• NoSQL
• Basic Availability

• Application must handle partial failures itself
• Soft State

• DB state can change even without inputs
• Eventually Consistency

• DB will “eventually” become consistent

• i.e., ACID vs BASE

Slide Deck Title

Data Models
Taxonomy based on data models:
• Key-value stores
• e.g., Amazon Dynamo, Voldemort, Memcached

• Extensible Record Stores
• e.g., HBase, Cassandra, PNUTS

• Document stores
• e.g., SimpleDB, CouchDB, MongoDB

☞

Slide Deck Title

Key-Value Stores Features

• Data model: (key,value) pairs
• Key = string/integer, unique for the entire data
• Value = can be anything (very complex object)

Slide Deck Title

Key-Value Stores Features

• Data model: (key,value) pairs
• Key = string/integer, unique for the entire data
• Value = can be anything (very complex object)

• Operations
• get(key), put(key,value)
• Operations on value not supported

Slide Deck Title

Key-Value Stores Features
• Data model: (key,value) pairs

• Key = string/integer, unique for the entire data
• Value = can be anything (very complex object)

• Operations
• get(key), put(key,value)
• Operations on value not supported

• Distribution / Partitioning – w/ hash function
• No replication: key k is stored at server h(k)
• Multi way-way replication: e.g., key k stored at h1(k),h2(k),h3(k)

How does get(k) work? How does put(k,v) work?

Slide Deck Title

Example
• How would you represent the Flights data as key, value pairs?

Flights(fid, date, carrier, flight_num, origin, dest, ...)
Carriers(cid, name)

Slide Deck Title

Example
• How would you represent the Flights data as key, value pairs?

• Option 1: key=fid, value=entire flight record

Flights(fid, date, carrier, flight_num, origin, dest, ...)
Carriers(cid, name)

Slide Deck Title

Example
• How would you represent the Flights data as key, value pairs?

• Option 1: key=fid, value=entire flight record

• Option 2: key=date, value=all flights that day

Flights(fid, date, carrier, flight_num, origin, dest, ...)
Carriers(cid, name)

Slide Deck Title

Example
• How would you represent the Flights data as key, value pairs?

• Option 1: key=fid, value=entire flight record

• Option 2: key=date, value=all flights that day

• Option 3: key=(origin,dest), value=all flights between

How does query processing work?

Flights(fid, date, carrier, flight_num, origin, dest, ...)
Carriers(cid, name)

Slide Deck Title

Key-Value Stores Internals
• Partitioning:

• Use a hash function h
• Store every (key,value) pair on server h(key)

• Replication:
• Store each key on (say) three servers
• On update, propagate change to the other servers; eventual

consistency
• Issue: when an app reads one replica, it may be stale

• Usually: combine partitioning+replication

Slide Deck Title

Data Models
Taxonomy based on data models:
• Key-value stores
• e.g., Amazon Dynamo, Voldemort, Memcached

• Extensible Record Stores
• e.g., HBase, Cassandra, PNUTS

• Document stores
• e.g., SimpleDB, CouchDB, MongoDB

☞

Slide Deck Title

Extensible Record Stores
• Also called wide-column stores
• Based on Google’s BigTable
• HBase is an open source implementation of BigTable

• Data model:
• Variant 1: key = rowID, value = record
• Variant 2: key = (rowID, columnID), value = field

• Or multiple columnIDs in the key

• Will not discuss in class

Slide Deck Title

Data Models
Taxonomy based on data models:
• Key-value stores
• e.g., Amazon Dynamo, Voldemort, Memcached

• Extensible Record Stores
• e.g., HBase, Cassandra, PNUTS

• Document stores
• e.g., SimpleDB, CouchDB, MongoDB☞

Slide Deck Title

Motivation
• In Key, Value stores, the Value is often a very complex

object
• Key = ‘2010/7/1’, Value = [all flights that date]

• Better: value to be structured data
• JSON or Protobuf or XML
• Called a “document” but it’s just data

We will discuss JSON

Slide Deck Title

JSON - Overview

• JavaScript Object Notation = lightweight text-
based open standard designed for human-
readable data interchange. Interfaces in C, C++,
Java, Python, Perl, etc.

• The filename extension is .json.

We will emphasize JSON as semi-structured data

Slide Deck Title

JSON Syntax
{ "book": [

{"id":"01",
"language": "Java",
"author": "H. Javeson",
"year": 2015

},
{"id":"07",
"language": "C++",
"edition": "second"
"author": "E. Sepp",
"price": 22.25

}
]

}

Slide Deck Title

JSON vs Relational
• Relational data model

• Rigid flat structure (tables)
• Schema must be fixed in advanced
• Binary representation: good for performance, bad for exchange
• Query language based on Relational Algebra

• Semistructured data model / JSON
• Flexible, nested structure (trees)
• Does not require predefined schema ("self-describing”)
• Text representation: good for exchange, bad for performance
• Most common use: Language API; query languages emerging

Slide Deck Title

JSON Types
• Primitive: number, string, Boolean, null

• Object: collection of name-value pairs:
• {“name1”: value1, “name2”: value2, …}
• “name” is also called a “key”

• Array: ordered list of values:
• [obj1, obj2, obj3, ...]

Slide Deck Title

Avoid Using Duplicate Keys

{"id":"07",
"title": "Databases",
"author": "Garcia-Molina",
"author": "Ullman",
"author": "Widom"

}

{"id":"07",
"title": "Databases",
"author": ["Garcia-Molina",

"Ullman",
"Widom"]

}

The standard allows them, but many implementations don’t
Use an ordered list instead

Slide Deck Title

JSON Semantics: a Tree !
person

Mary

name address
name address

street no city

Maple 345 SF

John
Thai

phone

23456

0
1

{“person”:
[{“name”: “Mary”,

“address”:
{“street”:“Maple”,
“no”:345,
“city”: “SF”}},

{“name”: “John”,
“address”: “Thailand”,
“phone”:2345678}}

]
}

Slide Deck Title

JSON Semantics: a Tree !
person

Mary

name address
name address

street no city

Maple 345 SF

John
Thai

phone

23456

{“person”:
[{“name”: “Mary”,

“address”:
{“street”:“Maple”,
“no”:345,
“city”: “SF”}},

{“name”: “John”,
“address”: “Thailand”,
“phone”:2345678}}

]
}

Object 0
Object 1

Recall: arrays are ordered in JSON!

0
1

Slide Deck Title

Intro to Semi-structured Data
• JSON is self-describing
• Schema elements become part of the data
• Relational schema: person(name,phone)
• In JSON “person”, “name”, “phone”

are part of the data, and are repeated many times
• ⇨ JSON is more flexible
• Schema can change per tuple

Slide Deck Title

Storing JSON in RDBMS

• Using JSON as a data type provided by RDBMSs
• Declare a column that contains either json or jsonb (binary)

• CREATE TABLE people (person json) [or jsonb for binary]
• In our previous example, we will have one row per person

• i.e., a row corresponding to that person’s attributes
• Queries now mix relational and semi-structured syntax

• SELECT * FROM people
WHERE person @> `{“name”: “Mary”}’;

• Translate JSON documents into relations

Slide Deck Title

Mapping Relational Data to JSON

name name namephone phone phone
“John” 3634 “Sue” “Dirk”6343 6363

Person

person

name phone
John 3634
Sue 6343
Dirk 6363

{“person”: [
{“name”: “John”, “phone”:3634},
{“name”: “Sue”, “phone”:6343},
{“name”: “Dirk”, “phone”:6383}
]

}

Slide Deck Title

Mapping Relational Data to JSON

Person
name phone
John 3634
Sue 6343

May inline multiple relations based on foreign keys

Orders
personName date product
John 2002 Gizmo
John 2004 Gadget
Sue 2002 Gadget

{“Person”:
[{"name": "John",
"phone":3646,
"Orders":[
{"date":2002,"product":"Gizmo"},
{“date”:2004,"product":"Gadget"}
]
},
{"name": "Sue",
"phone":6343,
"Orders":[
{"date":2002,"product":"Gadget"}
]
}
]
}

Slide Deck Title

Mapping Relational Data to JSON

Person
name phone
John 3634
Sue 6343

Many-many relationships are more difficult to represent

Orders
personName date product
John 2002 Gizmo
John 2004 Gadget
Sue 2002 Gadget

prodName price
Gizmo 19.99
Phone 29.99
Gadget 9.99

Product

Options for the JSON file:
• 3 flat relations:

Person,Orders,Product
• PersonàOrdersàProducts

products are duplicated
• ProductàOrdersàPerson

persons are duplicated

Slide Deck Title

Mapping Semi-structured Data to Relations

• Missing attributes:

• Could represent in
a table with nulls name phone

John 1234
Joe NULL

{“person”:
[{“name”:“John”, “phone”:1234},
{“name”:“Joe”}]

} no phone !

Slide Deck Title

• Repeated attributes

• Impossible in
one table: name phone

Mary 2345 3456 ???

{“person”:
[{“name”:”John”, “phone”:1234},
{“name”:”Mary”, “phone”:[1234,5678]}]

}
Two phones !

Mapping Semi-structured Data to Relations

Slide Deck Title

• Attributes with different types in different objects

• Nested collections
• Heterogeneous collections

• These are difficult to represent in the relational model

{“person”:
[{“name”:“Sue”, “phone”:3456},
{“name”:{“first”:“John”, “last”:“Smith”},“phone”:2345}
]

}

Structured
name !

Mapping Semi-structured Data to Relations

Slide Deck Title

Discussion: Why Semi-Structured Data?

• Semi-structured data works well as data exchange formats
• i.e., exchanging data between different apps
• Examples: XML, JSON, Protobuf (protocol buffers)

• Increasingly, systems use them as a data model for DBs:
• SQL Server supports for XML-valued relations
• CouchBase, MongoDB, Snowflake: JSON
• Dremel (BigQuery): Protobuf

Slide Deck Title

Query Languages for Semi-Structured Data
• XML: XPath, XQuery (see textbook Ch 27)

• Supported inside many RDBMS (SQL Server, DB2, Oracle)
• Several standalone XPath/XQuery engines

• Protobuf: SQL-ish language (Dremel) used internally by google, and externally
in BigQuery

• JSON:
• CouchBase: N1QL
• AsterixDB: SQL++ (based on SQL)
• MongoDB: has a pattern-based language
• JSONiq: http://www.jsoniq.org/

http://www.jsoniq.org/

Slide Deck Title

Semistructured Data Model
• Several file formats: JSON, protobuf, XML
• Data model = Tree

• Query language take non first normal form into
account as we will see
• Various “extra” constructs introduced as a result

• Nesting & Unnesting, strict aggregates, splitting

