NoSQL |

Motivations and Data Model

Alvin Cheung
Aditya Parameswaran

Two Classes of Relational Database Apps merkeley

* OLTP (Online Transaction Processing)

* Queries are simple lookups: 0 or 1 join
E.g., find customer by ID and their orders

* Many updates. E.g., insert order, update payment
« Consistency is critical: we need transactions

* OLAP (Online Analytical Processing)
» aka “Decision Support”

* Queries have many joins, and group-by’s
E.g., sum revenues by store, product, clerk, date

* No updates

NoSQL Motivation ﬂL—Berkeley I

 Originally motivated by Web 2.0 applications
- E.g., Facebook, Amazon, Instagram, etc
 Startups need to scaleup from 10 to 107 clients quickly

* Needed: very large scale OLTP workloads
« Give up on consistency, give up OLAP

* NoSQL: reduce functionality
« Simpler data model
* \ery restricted updates

Structuring RDBMS Apps: “Serverless” merkeley

Desktop
SQLite:
¢ One datafile
\ * One user
One DBMS application
DBMS >
A%)gia.tt'on Consistency is easy
(ite) But only a limited number of

scenarios work with such model

Data file

[Pl |

Structuring RDBMS Apps: Client-Server merkeley

Client
Applications

File 1

File

File

EIRHRES

DB Server

One server running the database

Many clients, connecting via the ODBC or JDBC
(Java Database Connectivity) protocol

Structuring RDBMS Apps: Client-Server merkeley

Many users and apps _
C it is harder = Client
Server Machine onsistency 'S_ arae Applications
transactions -

Y
—
-— >N/
i
]| e
a »,

===

S

File 1

File

File

EIRHRES

DB Server

One server running the database

Many clients, connecting via the ODBC or JDBC
(Java Database Connectivity) protocol

Client-Server g Berkeley [

* One server that runs the DBMS (or RDBMS):
* Your own desktop, or

* Some beefy system, or
A cloud service (AWS, SQL Azure)

Client-Server ﬂ Berkeley l

* One server that runs the DBMS (or RDBMYS):
* Your own desktop, or
« Some beefy system, or
A cloud service (SQL Azure)
* Many clients run apps and connect to DBMS
« Microsoft’s Management Studio (for SQL Server), or
» psql (for postgres)
* Your Java/C++/Python/etc program

Client-Server ﬂ Berkeley l

* One server that runs the DBMS (or RDBMS):
* Your own desktop, or
« Some beefy system, or
A cloud service (SQL Azure)
* Many clients run apps and connect to DBMS
» Microsoft’s Management Studio (for SQL Server), or
* psql (for postgres)
* Your Java/C++/Python/etc program
+ Clients “talk” to server using JDBC/ODBC protocol

Web Apps: 3 Tier L—Berkglsgy l

Web Apps: 3 Tier

Connection

(e.g., JDBC]

Web Apps: 3 Tier

[Web-based applications }

Connection
(e.g., JDBC]

Web Apps: 3 Tier

[Web-based applications } — = /

App+Web Server

Connection [—

—

(e.q.,JDBC)| |— |~
HTTP/SSL

App+Web Server

—
—

oV
i
N 1) SV
)
oV
i
N 1) SV
)
oV
Q)
— 25
7
= &
oV
i
N 1) SV
)
oV
i
i)

App+Web Server

Web Apps: 37 Replicate

App server
for scaleup

[Web-based appive... .-

/

/

Connection

Why not replicate DB server?

(e.g., JDBC)

App+Web Server

—
—

—

3

App+Web Server

App+Web Server

/

-

HTTP/SSL

Web Apps: 37 Replicate

App server
for scaleup

[Web-based appive... .- — =
\

App+Web Server

Connection [—

—

(e.g., JDBC)| [—

\ AppWVTeB-S-eﬁer
Why not replicate DB server? \

Consistency! o FIVEE Berver

HTTP/SSL ¢

Replicating the Database rerkeley |

* Two basic approaches:
» Scale up through partitioning — “sharding”
» Scale up through replication

» Consistency is much harder to enforce

Scale Through Partitioning :Berkdey l

- Partition the database across many machines in a cluster
Database now fits in main memory
Queries spread across these machines

« Can increase throughput
« Easy for writes but reads become expensive!

Application

updates here May also

update here

Three partitions

Scale Through R

« Create multiple copies of each database partition

leplication

« Spread queries across these replicas
« Can increase throughput and lower latency

« Can also improve fault-tol

- Easy for reads but writes become expensive!

App 1
updates
here only

erance

Three replicas

; Berkeley l

App 2
updates
here only

Relational Model > NoSQL m
- Relational DB: difficult to replicate/partition. E.g., |

Supplier(sno,..),Part(pno,..),Supply(sno,pno)
 Partition: we may be forced to join across servers

* Replication: local copy has inconsistent versions
« Consistency is hard in both cases (why?)

« NoSQL: simplified data model
« Given up on functionality
* Application must now handle joins and consistency

Chem 1A

* Relational DB
« Atomicity
« Consistency
 Isolation
* Durability
 NoSQL
- Basic Availability
« Application must handle partial failures itself

« Soft State
- DB state can change even without inputs

- Eventually Consistency
- DB will “eventually” become consistent

- i.e., ACID vs BASE

Data Models ; Berkeley l

Taxonomy based on data models:
» Key-value stores
= ° e.g., Amazon Dynamo, Voldemort, Memcached
« Extensible Record Stores
* e.g., HBase, Cassandra, PNUTS
 Document stores
> e.g., SimpleDB, CouchDB, MongoDB

Key-Value Stores Features m

- Data model: (key,value) pairs
» Key = string/integer, unique for the entire data
* Value = can be anything (very complex object)

Key-Value Stores Features m

- Data model: (key,value) pairs
» Key = string/integer, unique for the entire data
* Value = can be anything (very complex object)
* Operations
« get(key), put(key,value)
» Operations on value not supported

Key-Value Stores Features m

- Data model: (key,value) pairs
« Key = string/integer, unique for the entire data
« Value = can be anything (very complex object)
* Operations
« get(key), put(key,value)
* Qperations on value not supported
 Distribution / Partitioning — w/ hash function
* No replication: key k is stored at server h(k)
« Multi way-way replication: e.g., key k stored at h1(k),h2(k),h3(k)

How does get(k) work? How does put(k,v) work?

Flights(fid, date, carrier, flight_num, origin, dest, ...)
Exam ple Carriers(cid, name) ; Berkeley '
cs186

- How would you represent the Flights data as key, value pairs?

Flights(fid, date, carrier, flight_num, origin, dest, ...)
Exam ple Carriers(cid, name) ; Berkeley '
cs186

- How would you represent the Flights data as key, value pairs?

« Option 1: key=fid, value=entire flight record

Flights(fid, date, carrier, flight_num, origin, dest, ...)
Exam ple Carriers(cid, name) ; Berkeley l
cs186

- How would you represent the Flights data as key, value pairs?

« Option 1: key=fid, value=entire flight record

- Option 2: key=date, value=all flights that day

Flights(fid, date, carrier, flight_num, origin, dest, ...)
Exam ple Carriers(cid, name) ; Berke]ey l
cs186

How would you represent the Flights data as key, value pairs?

Option 1: key=fid, value=entire flight record

Option 2: key=date, value=all flights that day

Option 3: key=(origin,dest), value=all flights between

How does query processing work?

Key-Value Stores Internals m

* Partitioning:

« Use a hash function h

« Store every (key,value) pair on server h(key)
* Replication:

« Store each key on (say) three servers

* On update, propagate change to the other servers; eventual
consistency

* Issue: when an app reads one replica, it may be stale
« Usually: combine partitioning+replication

Data Models ; Berkeley l

Taxonomy based on data models:
» Key-value stores
* e.g., Amazon Dynamo, Voldemort, Memcached
« Extensible Record Stores
w ¢ e.g., HBase, Cassandra, PNUTS
 Document stores
> e.g., SimpleDB, CouchDB, MongoDB

Extensible Record Stores rBerkeley l

 Also called wide-column stores

« Based on Google’s BigTable
« HBase is an open source implementation of BigTable

Data model:
* Variant 1: key = rowlD, value = record

* Variant 2: key = (rowlD, columnlD), value = field
* Or multiple columnIDs in the key

Will not discuss in class

Data Models ; Berkeley l

Taxonomy based on data models:
» Key-value stores

* e.g., Amazon Dynamo, Voldemort, Memcached
« Extensible Record Stores

* e.g., HBase, Cassandra, PNUTS
 Document stores

= ° €.9., SimpleDB, CouchDB, MongoDB

Motivation ﬂ Berkeley [

* In Key, Value stores, the Value is often a very complex
object

« Key = ‘2010/7/1°, Value = [all flights that date]

 Better: value to be structured data
 JSON or Protobuf or XML
« Called a “document” but it’s just data

We will discuss JSON

JSON - Overview
Berkeley

 JavaScript Object Notation = lightweight text-
based open standard designed for human-
readable data interchange. Interfaces in C, C++,
Java, Python, Perl, etc.

* The filename extension is .json.

We will emphasize JSON as semi-structured data

JSON Syntax

{ "book": [
{llidll:llelll,
"language": "Java",

"author": "H. Javeson",
"year": 2015

}s

"id":"e7",

"language": "C++",
"edition": "second"
"author": "E. Sepp",
"price": 22.25

JSON vs Relational Berkeley

* Relational data model
 Rigid flat structure (tables)
« Schema must be fixed in advanced
« Binary representation: good for performance, bad for exchange
* Query language based on Relational Algebra

« Semistructured data model / JSON
* Flexible, nested structure (trees)
* Does not require predefined schema ("self-describing”)
« Text representation: good for exchange, bad for performance
 Most common use: Language API; query languages emerging

JSON TypeS ; Berkeley l

* Primitive: number, string, Boolean, null

* QObject: collection of name-value pairs:
* {“namel”: valuel, “name2”: value2, ..}
* “name” is also called a “key”

* Array: ordered list of values:
 [objl, obj2, obj3, ...]

Avoid Using Duplicate Keys rerkeley |

The standard allows them, but many implementations don’t

@ordered list instead

{"id":"e7", {"id":"e7",
"title": "Databases", "title": "Databases™;
"author": "Garcia-Molina", "author": ["Garcia-Molina",
"author": "Ullman", i‘> "Ullman",
"author": "Widom" "Widom"]

} }

JSON Semantics: a Tree !

{“person”:
[{“name”: “Mary”,

“address”:
{“street”:“Maple”,
“no”:345,
ﬂ'City)J: ﬂ'SF).’}},
{“name”: “John”,
“address”: “Thailand”,
“phone”:2345678}}

]

JSON Semantics: a Tree ! rerkeley |

{“person”:
[{“name”: “Mary”, Ok
“address”:

{“street”:“Maple”,
“no”:345,

“city”: “SF”}},
{“name”: “John”, P
“address”: “Thailand”,

“phone”:2345678}}

]

}

Recall: arrays are ordered in JSON!

Intro to Semi-structured Data rerkeley l

« JSON is self-describing
« Schema elements become part of the data
* Relational schema: person(name, phone)

* In JSON “person”, “name”, “phone”
are part of the data, and are repeated many times

« = JSON is more flexible
« Schema can change per tuple

Storing JSON in RDBMS rerkeley |

« Using JSON as a data type provided by RDBMSs

« Declare a column that contains either json or jsonb (binary)
 CREATE TABLE people (person json) [or jsonb for binary]
 In our previous example, we will have one row per person
* i.e., a row corresponding to that person’s attributes
* Queries now mix relational and semi-structured syntax
« SELECT * FROM people
WHERE person @> ~{“name”: “Mary”}’;

* Translate JSON documents into relations

Mapping Relational Data to JSON m

person
Person name phone name phone name phone
“John” 3634 “Sue” 6343 ‘Dirk” 6363
name phone
John 3634 {“person”: |
{“name”: “John”, “phone”:3634},
Sue 6343 {“name”: “Sue”, “phone”:6343},
Dirk 6363 {“name”: “Dirk”, “phone”:6383}
]
}

elational Data to JSON

Mapping FH

May inline multiple relations based on foreign keys

;. Berkgllsgy l

Person

name phone

John 3634

Sue 6343

Orders
personName date |product
John 2002 | Gizmo
John 2004 |Gadget
Sue 2002 |Gadget

{“Person”:
[{"name": "John",
"phone" :3646,

"Orders":|

{"date":2002, "product
{“date”:2004, "product

]

}5

{"name": "Sue",
"phone" :6343,
"Orders™: [

{"date":2002, "product’

]
}
]
}

":"Gizmo"},
":"Gadget"}

":"Gadget"}

Mapping FH

elational Data to JSON m
Many-many relationships are more difficult to represent | it

Product

prodName price
Gizmo 19.99
Phone 29.99
Gadget 9.99

Person

name phone

John 3634

Sue 6343

Orders

personName |date |product
John 2002 |Gizmo
John 2004 |Gadget
Sue 2002 |Gadget

Options for the JSON file:

« 3 flat relations:
Person,Orders,Product
 Person->O0rders—>Products
products are duplicated
* Product>Orders—>Person

persons are duplicated

Mapping Semi-structured Data to Relations m

* Missing attributes:

{“person”:
[{“name”:“John”, “phone”:1234},

((namej) : ﬂ'Joe)J
y oo

* Could represent in
a table with nulls

name | phone
John | 1234
Joe NULL

Mapping Semi-structured Data to Relations m

* Repeated attributes

{“person”:
[{“name”:”John”, “phone”:1234},
{“name”:”Mary”, “phone®:[1234,5678]}]

name | phone
Mary | 2345 | 3456

}

* Impossible In
one table:

Mapping Semi-structured Data to Relations M

Attributes with different types in different objects

{“person”:
[{“name”:“Sue”, “phone”:3456},
{“name”:{“first”:“John”, “last”:“Smith”},“phone”:2345}

} N

Structured
name !

Nested collections
Heterogeneous collections

These are difficult to represent in the relational model

Discussion: Why Semi-Structured Data? ﬁ
Berkeley

« Semi-structured data works well as data exchange formats

* i.e., exchanging data between different apps
* Examples: XML, JSON, Protobuf (protocol buffers)

 Increasingly, systems use them as a data model for DBs:

* SQL Server supports for XML-valued relations
« CouchBase, MongoDB, Snowflake: JSON
* Dremel (BigQuery): Protobuf

Query Languages for Semi-Structured Data m

| Berkgllsgy

« XML: XPath, XQuery (see textbook Ch 27)
Supported inside many RDBMS (SQL Server, DB2, Oracle)
Several standalone XPath/XQuery engines

* Protobuf: SQL-ish language (Dremel) used internally by google, and externally
in BigQuery

« JSON:
« CouchBase: N1QL
AsterixDB: SQL++ (based on SQL)
MongoDB: has a pattern-based language
JSONIq: http://www.jsonig.org/

http://www.jsoniq.org/

Semistructured Data Model rBerkeley l

« Several file formats: JSON, protobuf, XML
 Data model = Tree

* Query language take non first normal form into
account as we will see

» Various “extra” constructs introduced as a result
* Nesting & Unnesting, strict aggregates, splitting

