
Column Stores

Alvin Cheung
Aditya Parameswaran

Star Schema
• Data warehouse example:

• Fact table: Sales (itemid, storeid, customerid, date, number, price)
• Dim table: Iteminfo (itemid, itemname, color, size, category)
• Dim table: Store (storeid, city, state, country)
• Dim table: Customer (customerid, name, street, city, state)
• Dim table: Dateinfo (date, month, quarter, year)

• Reminder:
• Fact table records info. about an event
• Dim. table records auxiliary info.

• Even this simple example has lots of attributes.
• Fact and dim. tables in practice often have 100s of attributes each

2

Store
Iteminfo

Customer

Sales

Date

Star Schema

• However, most analytical/OLAP queries don’t require
accessing all 100-odd attributes across all tables
• Rarely will you be doing SELECT * on a 1PB Sales fact table.
• Instead, most queries would touch 2-3 attributes at a time to

construct a data cube
SELECT category, country, month, COUNT(number)
FROM Sales NATURAL JOIN Iteminfo NATURAL JOIN Store
CUBE BY category, country, month

3

Store
Iteminfo

Customer

Sales

Date

Recall Our Slotted Page Representation
SSN Last Name First Name Age Salary

123 Adams Elmo 31 $400

443 Grouch Oscar 32 $300

244 Oz Bert 55 $140

134 Sanders Ernie 55 $400

Record

Bob M 32 400Harmon

Varchar Varchar Char Int Int

Slotted Page

Page
Header

File

Page 1 Page 2

Page 3 Page 4

Page 5 Page 6

Header M
94

70
3

Bob Harmon32

Byte Representation of Record

Traditional Storage: Row-oriented
• RDBMSs store row-oriented data across disk pages
• Page will store all attrs. per row, incl. variable and constant

length fields

• Imagine a 100+attribute fact table Sales.
• Example query: SELECT item, color, SUM(number) FROM

Sales CUBE BY item, color

• For this CUBE BY query the remaining 97/100 attrs. is
wasted
• è Only 3% of the I/O is useful
• Remaining attrs. will get projected out

• Unnecessary work:
• Reading redundant data from disk
• Having to project out this data within memory

5

Slotted Page

Page
Header

An Alternative: Split Columns?
• Why not store groups of columns separately from

each other
• Eg., if the most frequent query is:
• SELECT item, color, SUM(number)

FROM Sales GROUP BY item, color

• Storing item, color, and number separate from rest,
will help avoid reading and processing ~97% of the
data

• Q: Does this suffice?
• A: No! We need a way to reconstruct original tuples.

Recall lossless decomposition.
• Return to this later

6

Page
Header

Page
Header

Page
Header

Page
Header

Page
Header

Page
Header

Item, color, number

Remaining attrs.

Column-Oriented vs Row-Oriented
Storage

• Basic idea:
• Storing groups of columns

separate from each other
• Can be one column each or

subsets of columns
• Some systems allow same

column to be repeated, we’ll
discuss later

Item Color Size Number

Item Color Size Number

Item Size Color Number

Column Stores
• Column stores are a specialization of RDBMSs for OLAP that use column-

oriented storage (among many other innovations)
• Traditional RDBMS, in contrast, called row stores

• Many industrial offerings: Vertica, Vector, Druid, Greenplum, Amazon
Redshift, SAP IQ, ParAccel …
• Column store ideas have made their way into traditional RDBMSs like

PostgreSQL, MS SQL Server, DB2, Oracle, …
• Column storage ideas have been used in NoSQL, e.g., Dremel, Impala,

HBase, …
• Ideas have been around for >2 decades but really rose to prominence in

the late 2000s

8

Reconstruction Alternative 1: Explicit IDs
• If we store columns

separate from each
other, how do we
reconstruct the tuples?

• One option, explicit IDs
• Join to reconstruct
• Not necessary for

each column to be
stored sorted

• Downside: extra storage
and processing
overhead

9

TID Item TID Color TID Size TID Number

Item Color Size Number

Alternative 2: Virtual IDs
Instead, most column stores
implicitly use position to record
the nth value for a given column.
• If fixed width, easy to lookup
• Start + (n x width).

• Else, will need either pointers
(recall: var length fields in
record encoding) or encode
length as part of each var.
length field.

10

Item Color Size Number

Drawbacks?

Sound magical! Do we have a better design than row stores?

• Imagine wanting to read a single tuple
• Can simply read the corresponding page in row store
• In column stores need multiple I/Os one per column group

• Specifically, hard to do updates: will need to individually update all columns

• Column stores work better when we want to read a subset of columns of most of the
tuples
• Thus, a good fit for OLAP!
• E.g., constructing a data cube of some select columns

11

Item Color Size Number

OK, so are we done?
• Not quite.
• Turns out there are lots of additional improvements beyond

columnar storage in column stores…

• First up, compression
• Compression wasn’t relevant in row stores because we were

storing heterogeneously-typed columns.

12

Compression
• Q: How would you go about compressing a collection of salaries?

states? product codes? zipcodes?

Desirable properties:
• Must reduce space considerably
• Must be quick to decompress
• Most “fancy” approaches are too slow for OLAP

13

First Approach: Run-Length Encoding (RLE)
RLE simply encodes a sequence of values based on the number of times
each value appears

A A A B B B B B A A A C
<3, A> <5, B> <3, A> <1, C>

Q: When would this work well?

• Works really well when data is already pre-sorted by the attribute; doesn’t
work too well with randomized orders
• Doesn’t work too well with numeric data with many unique values
• Advantage: can use it effectively if we want to do aggregates:

e.g., SUM(<3, 10> <5, 6>) = 3 * 10 + 5 * 6 14

Second Approach: Dictionary Encoding
Mapping every distinct value into another that takes less space.
Eg, instead of using variable length strings for encoding states,
can encode states into a single byte (2^8 > 50)

Alabama = 0, Arkansas = 1, …

Q: When does this work well?
Strings where once again # of distinct values is small; doesn’t
require ordering

15

Third Approach: Frame of Reference
Store first value, rest stored as “deltas” from the previous one
e.g., 1000, 1001, 1003, 1004, …

Stored as: 1000, +1, +2, +1 etc.

Q: When does this work well?
When the data is already sorted, or if there is locality: works
better with numbers than with strings

16

Fourth Approach: Bit Vector Encoding
Encode every single possible value as a bit vector
1 1 3 2 2 3 1 encoded as:

Bit string for 1: 1 1 0 0 0 0 1
Bit string for 2: 0 0 0 1 1 0 1
Bit string for 3: 0 0 1 0 0 1 0

Q: When does this work well?
• Small number of distinct values
• Benefit of the bit strings is that they can be easily processed on
• If we wanted to get all the values corresponding to 2, grab the bit string for 2
• If we wanted 2 or 3, we can OR the two bit strings

• Bit vectors are very efficiently manipulated by modern processors

17

So: what compression should we use?
• Answer: it depends
• On the type of data
• The locality
• What you want to do with it
• The # of space you have
• etc.

18

Now, back to Column Stores
• Since columns are stored separate from each other, we can compress better

than if we were to apply it to entire rows
• e.g.,

<Washington, M, 100000>,
<California, F, 200000>,
<Louisiana, O, 150000>

• Can’t easily apply any of the compression schemes at the row level
• But:
• States (Washington, California, …) can be dictionary encoded
• Gender (M, F, O, …) can be bit vector encoded
• Salaries can be FOR-encoded

• Thus compression is more beneficial for column stores than row stores

19

Should we store entire columns separate
from each other?
• Answer: it depends
• Entire columns lead to more compression
• But if multiple columns are often accessed together may want to store them together —

known as “column groups” or projections

• In general, depends on the workload.
• Say we primarily issue two queries on a relation with attributes A—Z, one with A, B, C

and another with A, B, D?
• Can store <A, B, C, D> and then <E—Z>, or
• Can store <A, B, C>, <D>, <E—Z>, (+symmetric alternative) or
• Can store <A, B>, <C>, <D>, <E—Z>, or
• Can store <A>, , <C>, <D>, <E—Z>

• The best choice depends on the frequency of the queries and the distributions of values
in A, B, C, D, as well as combinations of A, B, C, D.

20

Column Stores
• Two key ideas so far:
• Store (groups of) columns separate from each other
• Columns can be compressed

• Other ideas:
• Many different layouts
• Different sort orders, different subsets of cols

• Late materialization
• Vectorized processing
• Update support via WOS

21

Updates via a WOS
• Many column stores also support inserts, deletes, updates
• For example in Vertica
• Handled via a separate row-oriented in-memory Write-

Optimized Store (WOS) where new/updated tuples are stored
• For “invalidating” existing records, maintain an in-memory list of

all row numbers that have been deleted/updated
• Can skip those rows during processing

• This WOS data is periodically merged back into the columns

26

Takeaways
• For OLAP, column-oriented storage trumps row-oriented storage
• Many tricks beyond splitting columns up
• compression, late materialization, redundant layouts, efficient

write processing
• For OLTP, the costs of many random accesses for updating

columns makes a columnar layout not worth it
• Hence OLTP systems look more traditional, and typically opt for

row-oriented storage
• Many systems are now opting for hybrid layouts to try to support

both OLAP and OLTP in the same system

27

