Column Stores

Alvin Cheung
Aditya Parameswaran

Berkeley

cs186

Star Schema

» Data warehouse example:

« Fact table: Sales (itemid, storeid, customerid, date, number, price)

Dim table: Iteminfo (itemid, itemname, color, size, category) - -
Dim table: Store (storeid, city, state, country)
Dim table: Customer (customerid, name, street, city, state)

Dim table: Dateinfo (date, month, quarter, year)

 Reminder:
 Fact table records info. about an event
» Dim. table records auxiliary info.
* Even this simple example has lots of attributes.
» Fact and dim. tables in practice often have 100s of attributes each

Star Schema -\ :
ales

« However, most analytical/OLAP queries don’t require -
accessing all 100-odd attributes across all tables
* Rarely will you be doing SELECT * on a 1PB Sales fact table.

* Instead, most queries would touch 2-3 attributes at a time to
construct a data cube

SELECT category, country, month, COUNT(number)

FROM Sales NATURAL JOIN Iteminfo NATURAL JOIN Store
CUBE BY category, country, month

Recall Our Slotted Page Representation:

Record
Bob Harmon M 32 400
Varchar Varchar Char Int Int

Byte Representation of Record

94703

-I I I 0 e

Slotted Page

123 $400
443 Grouch Oscar 32 $300
244 Oz Bert 55) $140

134 Sanders Ernie 55 $400

Traditional Storage: Row-oriented Lo |

« RDBMSs store row-oriented data across disk pages Slotted Page
» Page will store all attrs. per row, incl. variable and constant
length fields

- Imagine a 100+attribute fact table Sales. ‘. i i
« Example query: SELECT item, color, SUM(number) FROM

Sales CUBE BY item, color HIII_"*! Z

 For this CUBE BY query the remaining 97/100 attrs. is
wasted

* = Only 3% of the I/O is useful
« Remaining attrs. will get projected out
* Unnecessary work:
* Reading redundant data from disk
« Having to project out this data within memory

An Alternative: Split Columns? el |

ltem, color, number
* Why not store groups of columns separately from

each other I “

 Eq., if the most frequent query is:

« SELECT item, color, SUM(number \]]
FROM Sales GROUP BY item, color Hlll
‘ (4

] | 4

« Storing item, color, and number separate from rest,
will help avoid reading and processing ~97% of the

Remaining attrs.

1] 14

data
» Q: Does this suffice? I I I i ! I
- A: No! We need a way to reconstruct original tuples. ﬁ ﬂl' i i
Recall lossless decomposition.] -
 Return to this later | | H : y

Column-Oriented vs Row-Oriented ol |
Storage

 Basic idea:

« Storing groups of columns <
separate from each other

 Can be one column each or
subsets of columns

« Some systems allow same
column to be repeated, we’ll
discuss later

Item Color Size Number

=
2 2
. -

__—

=
— —
- -
N T
2 2
- -

=

§Ber1<§}£y !

« Column stores are a specialization of RDBMSs for OLAP that use column-
oriented storage (among many other innovations)

* Traditional RDBMS, in contrast, called row stores

Column Stores

« Many industrial offerings: Vertica, Vector, Druid, Greenplum, Amazon
Redshift, SAP 1Q, ParAccel ...

« Column store ideas have made their way into traditional RDBMSs like
PostgreSQL, MS SQL Server, DB2, Oracle, ...

. (I_Dlglumn storage ideas have been used in NoSQL, e.g., Dremel, Impala,
ase, ...

* Ideas have been around for >2 decades but really rose to prominence in
the late 2000s

Reconstruction Alternative 1: Explicit IDs

* If we store columns
separate from each
other, how do we
reconstruct the tuples?

* One option, explicit IDs
e Join to reconstruct

* Not necessary for
each column 1o be

stored sorted

* Downside: extra storage
and processing
overhead

Berkeley

Item Color Size Number

TID Item TID Color TID Size TID Number

§ Berkeley !
Alternative 2: Virtual IDs
Instead, most column stores
irr;lspﬁcitly use posil;ion to record “ m “ m
| || || L !
e

the nth value for a given column.
* |f fixed width, easy to lookup
« Start + (n x width).

* Else, will need either pointers
(recall: var length fields in
record encoding) or encode
length as part of each var.
length field.

10

Drawbacks? “ m .

Sound magical! Do we have a better design than row stores?

* Imagine wanting to read a single tuple
« Can simply read the corresponding page in row store
* In column stores need multiple 1/0s one per column group
« Specifically, hard to do updates: will need to individually update all columns

* Column stores work better when we want to read a subset of columns of most of the
tuples

 Thus, a good fit for OLAP!

 E.g., constructing a data cube of some select columns
11

§B€r1a§£gy !

OK, so are we done?

* Not quite.

 Turns out there are lots of additional improvements beyond
columnar storage in column stores...

* First up, compression

« Compression wasn’t relevant in row stores because we were
storing heterogeneously-typed columns.

§Ber1<§}£y !

Compression

* Q: How would you go about compressing a collection of salaries?
states? product codes? zipcodes?

Desirable properties:
* Must reduce space considerably
* Must be quick to decompress
« Most “fancy” approaches are too slow for OLAP

&Beﬂaslsgy !

First Approach: Run-Length Encoding (RLE)

RLE simply encodes a sequence of values based on the number of times
each value appears

AAABBBBBAAAC
<3, A><5,B><3, A><1, C>

Q: When would this work well?

* Works really well when data is already pre-sorted by the attribute; doesn’t
work too well with randomized orders

* Doesn’t work too well with numeric data with many unique values
« Advantage: can use it effectively if we want to do aggregates:
e.g., SUM(<3, 10><5,6>)=3"10+5*6

§Beﬂ<§}£y !

Mapping every distinct value into another that takes less space.

Eg, instead of using variable length strings for encoding states,
can encode states into a single byte (278 > 50)

Alabama =0, Arkansas =1, ...

Second Approach: Dictionary Encoding

Q: When does this work well?

Strings where once again # of distinct values is small; doesn'’t
require ordering

§Ber1<§}£y !

Third Approach: Frame of Reference

Store first value, rest stored as “deltas” from the previous one
e.g., 1000, 1001, 1003, 1004, ...
Stored as: 1000, +1, +2, +1 etc.

Q: When does this work well?

When the data is already sorted, or if there is locality: works
better with numbers than with strings

§B€r1a§}£y !

Fourth Approach: Bit Vector Encoding

Encode every single possible value as a bit vector
1132231 encoded as:

Bit stringfor 1: 110000 1

Bit string for2: 000110 1

Bit string for3: 0010010

Q: When does this work well?

« Small number of distinct values

* Benefit of the bit strings is that they can be easily processed on
* If we wanted to get all the values corresponding to 2, grab the bit string for 2
« If we wanted 2 or 3, we can OR the two bit strings

* Bit vectors are very efficiently manipulated by modern processors

&Beﬂaslsgy !

So: what compression should we use?

« Answer: it depends
* On the type of data
* The locality
* What you want to do with it
* The # of space you have
. efc.

§Ber1<§}£y !

« Since columns are stored separate from each other, we can compress better
than if we were to apply it to entire rows

* e.g.,
<Washington, M, 100000>,
<California, F, 200000,
<lLouisiana, O, 150000>
« Can'’t easily apply any of the compression schemes at the row level
 But:
« States (Washington, California, ...) can be dictionary encoded
« Gender (M, F, O, ...) can be bit vector encoded

« Salaries can be FOR-encoded
« Thus compression is more beneficial for column stores than row stores

Now, back to Column Stores

Should we store entire columns separatggerkglﬁgyj
from each other?

* Answer: it depends
 Entire columns lead to more compression

« But if multiple columns are often accessed together may want to store them together —
known as “column groups” or projections

* In general, depends on the workload.

« Say we primarily issue two queries on a relation with attributes A—Z, one with A, B, C
and another with A, B, D?

» Can store <A, B, C, D> and then <E—Z>, or

» Can store <A, B, C>, <D>, <E—Z>, (+symmetric alternative) or
» Can store <A, B>, <C>, <D>, <E—Z7>, or

» Can store <A>, , <C>, <D>, <E—7>

 The best choice depends on the frequency of the queries and the distributions of values
in A, B, C, D, as well as combinations of A, B, C, D.

§Ber1<§}£y !

Column Stores

* Two key ideas so far:
 Store (groups of) columns separate from each other
* Columns can be compressed
» Other ideas:
« Many different layouts
 Different sort orders, different subsets of cols
« Late materialization
* Vectorized processing
« Update support via WOS

§Beﬂ<§}£y !

Updates via a WOS

* Many column stores also support inserts, deletes, updates
* For example in Vertica

* Handled via a separate row-oriented in-memory Write-
Optimized Store (WOS) where new/updated tuples are stored

 For “invalidating” existing records, maintain an in-memory list of
all row numbers that have been deleted/updated

 Can skip those rows during processing
» This WOS data is periodically merged back into the columns

§Ber1<§}£y !

Takeaways

« For OLAP, column-oriented storage trumps row-oriented storage
* Many tricks beyond splitting columns up

e compression, late materialization, redundant layouts, efficient
write processing

* For OLTP, the costs of many random accesses for updating
columns makes a columnar layout not worth it

« Hence OLTP systems look more traditional, and typically opt for
row-oriented storage

« Many systems are now opting for hybrid layouts to try to support
both OLAP and OLTP in the same system

