
Column Stores

Alvin Cheung
Aditya Parameswaran



Star Schema
• Data warehouse example:

• Fact table: Sales (itemid, storeid, customerid, date, number, price)
• Dim table: Iteminfo (itemid, itemname, color, size, category)
• Dim table: Store (storeid, city, state, country)
• Dim table: Customer (customerid, name, street, city, state)
• Dim table: Dateinfo (date, month, quarter, year)

• Reminder: 
• Fact table records info. about an event
• Dim. table records auxiliary info. 

• Even this simple example has lots of attributes.
• Fact and dim. tables in practice often have 100s of attributes each
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Star Schema

• However, most analytical/OLAP queries don’t require 
accessing all 100-odd attributes across all tables
• Rarely will you be doing SELECT * on a 1PB Sales fact table.
• Instead, most queries would touch 2-3 attributes at a time to 

construct a data cube
SELECT category, country, month, COUNT(number) 
FROM Sales NATURAL JOIN Iteminfo NATURAL JOIN Store 
CUBE BY category, country, month
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Recall Our Slotted Page Representation
SSN Last Name First Name Age Salary

123 Adams Elmo 31 $400

443 Grouch Oscar 32 $300

244 Oz Bert 55 $140

134 Sanders Ernie 55 $400

Record

Bob M 32 400Harmon
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Traditional Storage: Row-oriented
• RDBMSs store row-oriented data across disk pages 
• Page will store all attrs. per row, incl. variable and constant 

length fields

• Imagine a 100+attribute fact table Sales.
• Example query: SELECT item, color, SUM(number) FROM 

Sales CUBE BY item, color

• For this CUBE BY query the remaining 97/100 attrs. is 
wasted
• è Only 3% of the I/O is useful
• Remaining attrs. will get projected out

• Unnecessary work:
• Reading redundant data from disk
• Having to project out this data within memory

5

Slotted Page

Page
Header



An Alternative: Split Columns?
• Why not store groups of columns separately from 

each other
• Eg., if the most frequent query is:
• SELECT item, color, SUM(number) 

FROM Sales GROUP BY item, color

• Storing item, color, and number separate from rest, 
will help avoid reading and processing ~97% of the 
data

• Q: Does this suffice?
• A: No!  We need a way to reconstruct original tuples. 

Recall lossless decomposition. 
• Return to this later
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Column-Oriented vs Row-Oriented 
Storage

• Basic idea: 
• Storing groups of columns 

separate from each other
• Can be one column each or 

subsets of columns
• Some systems allow same 

column to be repeated, we’ll 
discuss later
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Column Stores 
• Column stores are a specialization of RDBMSs for OLAP that use column-

oriented storage (among many other innovations)
• Traditional RDBMS, in contrast, called row stores

• Many industrial offerings:  Vertica, Vector, Druid, Greenplum, Amazon 
Redshift, SAP IQ, ParAccel … 
• Column store ideas have made their way into traditional RDBMSs like 

PostgreSQL, MS SQL Server, DB2, Oracle, … 
• Column storage ideas have been used in NoSQL, e.g., Dremel, Impala, 

HBase, …
• Ideas have been around for >2 decades but really rose to prominence in 

the late 2000s
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Reconstruction Alternative 1: Explicit IDs
• If we store columns 

separate from each 
other, how do we 
reconstruct the tuples?

• One option, explicit IDs
• Join to reconstruct
• Not necessary for 

each column to be 
stored sorted

• Downside: extra storage 
and processing 
overhead
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Alternative 2: Virtual IDs
Instead, most column stores 
implicitly use position to record  
the nth value for a given column. 
• If fixed width, easy to lookup
• Start + (n x width).

• Else, will need either pointers 
(recall: var length fields in 
record encoding) or encode 
length as part of each var. 
length field.
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Drawbacks? 

Sound magical! Do we have a better design than row stores?

• Imagine wanting to read a single tuple
• Can simply read the corresponding page in row store
• In column stores need multiple I/Os one per column group

• Specifically, hard to do updates: will need to individually update all columns

• Column stores work better when we want to read a subset of columns of most of the 
tuples
• Thus, a good fit for OLAP!
• E.g., constructing a data cube of some select columns 
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OK, so are we done?
• Not quite. 
• Turns out there are lots of additional improvements beyond 

columnar storage in column stores…

• First up, compression
• Compression wasn’t relevant in row stores because we were 

storing heterogeneously-typed columns.
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Compression
• Q: How would you go about compressing a collection of salaries? 

states? product codes? zipcodes?

Desirable properties: 
• Must reduce space considerably
• Must be quick to decompress
• Most “fancy” approaches are too slow for OLAP
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First Approach: Run-Length Encoding (RLE)
RLE simply encodes a sequence of values based on the number of times 
each value appears

A A A B B B B B A A A C 
<3, A> <5, B> <3, A> <1, C>

Q: When would this work well? 

• Works really well when data is already pre-sorted by the attribute; doesn’t 
work too well with randomized orders
• Doesn’t work too well with numeric data with many unique values
• Advantage: can use it effectively if we want to do aggregates:

e.g., SUM(<3, 10> <5, 6>) = 3 * 10 + 5 * 6 14



Second Approach: Dictionary Encoding
Mapping every distinct value into another that takes less space.
Eg, instead of using variable length strings for encoding states, 
can encode states into a single byte (2^8 > 50) 

Alabama = 0, Arkansas = 1, …

Q: When does this work well? 
Strings where once again # of distinct values is small; doesn’t 
require ordering
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Third Approach: Frame of Reference 
Store first value, rest stored as “deltas” from the previous one
e.g., 1000, 1001, 1003, 1004, …

Stored as: 1000, +1, +2, +1 etc.

Q: When does this work well?
When the data is already sorted, or if there is locality: works 
better with numbers than with strings
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Fourth Approach: Bit Vector Encoding
Encode every single possible value as a bit vector
1 1 3 2 2 3 1 encoded as:

Bit string for 1: 1 1 0 0 0 0 1
Bit string for 2: 0 0 0 1 1 0 1
Bit string for 3: 0 0 1 0 0 1 0

Q: When does this work well?
• Small number of distinct values
• Benefit of the bit strings is that they can be easily processed on
• If we wanted to get all the values corresponding to 2, grab the bit string for 2
• If we wanted 2 or 3, we can OR the two bit strings

• Bit vectors are very efficiently manipulated by modern processors
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So: what compression should we use?
• Answer: it depends
• On the type of data
• The locality
• What you want to do with it
• The # of space you have 
• etc.
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Now, back to Column Stores
• Since columns are stored separate from each other, we can compress better 

than if we were to apply it to entire rows
• e.g., 

<Washington, M, 100000>, 
<California, F, 200000>, 
<Louisiana, O, 150000>

• Can’t easily apply any of the compression schemes at the row level
• But: 
• States (Washington, California, …) can be dictionary encoded 
• Gender (M, F, O, …) can be bit vector encoded
• Salaries can be FOR-encoded

• Thus compression is more beneficial for column stores than row stores
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Should we store entire columns separate 
from each other?
• Answer: it depends
• Entire columns lead to more compression
• But if multiple columns are often accessed together may want to store them together —

known as “column groups” or projections

• In general, depends on the workload.
• Say we primarily issue two queries on a relation with attributes A—Z, one with A, B, C 

and another with A, B, D?
• Can store <A, B, C, D> and then <E—Z>, or
• Can store <A, B, C>, <D>, <E—Z>, (+symmetric alternative) or 
• Can store <A, B>, <C>, <D>, <E—Z>, or 
• Can store <A>, <B>, <C>, <D>, <E—Z> 

• The best choice depends on the frequency of the queries and the distributions of values 
in A, B, C, D, as well as combinations of A, B, C, D. 
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Column Stores
• Two key ideas so far:
• Store (groups of) columns separate from each other
• Columns can be compressed

• Other ideas:
• Many different layouts
• Different sort orders, different subsets of cols

• Late materialization
• Vectorized processing
• Update support via WOS
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Updates via a WOS
• Many column stores also support inserts, deletes, updates
• For example in Vertica
• Handled via a separate row-oriented in-memory Write-

Optimized Store (WOS) where new/updated tuples are stored
• For “invalidating” existing records, maintain an in-memory list of 

all row numbers that have been deleted/updated 
• Can skip those rows during processing

• This WOS data is periodically merged back into the columns
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Takeaways
• For OLAP, column-oriented storage trumps row-oriented storage
• Many tricks beyond splitting columns up
• compression, late materialization, redundant layouts, efficient 

write processing
• For OLTP, the costs of many random accesses for updating 

columns makes a columnar layout not worth it
• Hence OLTP systems look more traditional, and typically opt for 

row-oriented storage
• Many systems are now opting for hybrid layouts to try to support 

both OLAP and OLTP in the same system
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