
CS 186
Fall 2020 Buffer Management
1 Introduction

The buffer manager is responsible for managing pages in memory and receives page requests from
the file and index manager. When pages are evicted from memory or new pages are read in to
memory, the buffer manager communicates with the disk space manager to perform the required
disk operations.

2 Buffer Pool

Memory is converted into a buffer pool by partitioning the space into frames that pages can be
placed in. A buffer frame can hold the same amount of data as a page can (so a page fits perfectly
into a frame). To efficiently track frames, the buffer manager allocates additional space in memory
for a metadata table.

The table tracks 4 pieces of information:

1. Frame ID that is uniquely associated with a memory address

2. Page ID for determining which page a frame currently contains

3. Dirty Bit for verifying whether or not a page has been modified

4. Pin Count for tracking the number of requestors currently using a page

3 Handling Page Requests

When pages are requested from the buffer manager and the page already exists within memory,
the page’s pin count is incremented and the page’s memory address is returned.

CS 186, Fall 2020, Course Notes 1 Jeremy Dong

CS 186
Fall 2020 Buffer Management

If the page does not exist in the buffer pool and there is still space, the next empty frame is
found and the page is read into that frame. The page’s pin count is set to 1 and the page’s
memory address is returned. In the case where the page does not exist and there are no empty
frames left, a replacement policy must be used to determine which page to evict. The choice of
replacement policy is heavily dependent on page access patterns and the optimal policy is chosen
by counting page hits. A page hit is when a requested page can be found in memory without
having to go to disk. Each page miss incurs an additional IO cost, so a good eviction policy
is critical for performance. Additionally, if the evicted page has the dirty bit set, the page is
written to disk to ensure that updates are persisted. The dirty bit is set to 1 if and when a page
is written to with updates in memory. The dirty bit is set to 0 once the page is written back to disk.

Once the requestor completes its workload, it is responsible for telling the buffer manager to decre-
ment the pin count associated with pages that it previously used.

4 LRU Replacement

A commonly used replacement policy is LRU (Least Recently Used). When new pages need to be
read into a full buffer pool, the least recently used unpinned page (pin count = 0) is evicted. To
track page usage, a last used column is added to the metadata table and measures the latest time
at which a page’s pin count is decremented.

Implementing LRU normally can be costly. The Clock policy provides an alternative implementa-
tion that efficiently approximates LRU using a ref bit (recently referenced) column in the metadata
table and a clock hand variable to track the current frame in consideration.

CS 186, Fall 2020, Course Notes 2 Jeremy Dong

CS 186
Fall 2020 Buffer Management

The Clock policy algorithm treats the metadata table as a circular list of frames. It sets the clock
hand to the first unpinned frame upon start and sets the ref bit on each page’s corresponding row
to 1 when it is initially read into a frame. The policy works as follows when trying to evict:

• iterate through frames within the table, skipping pinned pages and wrapping around to frame
0 upon reaching the end, until the first unpinned frame with ref bit = 0 is found

• during each iteration, if the current frame’s ref bit = 1, set the ref bit to 0 and move the clock
hand to the next frame

• upon reaching a frame with ref bit = 0, evict the existing page (and write it to disk if the
dirty bit is set; then set the dirty bit to 0), read in the new page, set the frame’s ref bit to 1,
and move the clock hand to the next frame

If accessing a page currently in the buffer pool, the clock policy sets the page’s ref bit to 1 without
moving the clock hand.

4.1 Sequential Scanning Performance - LRU

LRU performs well overall but performance suffers when a set of pages S, where |S| >buffer pool
size, are accessed multiple times repeatedly.

To highlight this point, consider a 3 frame buffer pool using LRU and having the access pat-
tern:

ABCDABCDABCDABCD

CS 186, Fall 2020, Course Notes 3 Jeremy Dong

CS 186
Fall 2020 Buffer Management

5 MRU Replacement

Another commonly used replacement policy is MRU (Most Recently Used). Instead of evicting the
least recently used unpinned page, evict the most recently used unpinned page measured by when
the page’s pin count was last decremented.

5.1 Sequential Scanning Performance - MRU

At first it might seem counter-intuitive to use this policy but consider the scenario where a 3 frame
buffer pool using MRU has the access pattern:

ABCDABCDABCDABCD

Clearly, MRU far outperforms LRU in terms of page hit rate whenever a sequential flooding access
pattern occurs.

CS 186, Fall 2020, Course Notes 4 Jeremy Dong

