CS 186
Fall 2020 Recovery

1 Motivation

In prior modules we discussed the ACID properties of transactions. In this note we will discuss
how to make our database resilient to failures. The two ACID properties that we will learn how to
enforce in this note are:

1. Durability: If a transaction finishes (commits), we will never lose the result of the transac-
tion.

2. Atomicity: Either all or none of the operations in the transaction will persist. This means
that we will never leave the database in an intermediate state. An example of this is swapping
a class in CalCentral. There are two operations: dropping your old class and adding the new
one. If the database crashes before it can add your new class, you do not actually want to be
dropped out of your old class.

2 FOI’CG/NO Force

Durability can be a very simple property to ensure if we use a force policy. The force policy states
when a transaction finishes, force all modified data pages to disk before the transaction commits.
This would ensure durability because disk is persistent!; in other words, once a page makes it to
disk it is saved permanently. The downside of this approach is performance. We end up doing a
lot of unnecessary writes. The policy we would prefer is no force which says to only write back to
disk when the page needs to be evicted from the buffer pool. While this helps reduce unnecessary
writes, it complicates durability because if the database crashes after the transaction commits, some
pages may not have been written to disk and are consequently lost from memory, since memory is
volatile. To address this problem, we will redo certain operations during recovery.

3 Steal / No—Steal

Similarly, it would be easy to ensure atomicity with a no-steal policy. The no-steal policy states
that pages cannot be evicted from memory (and thus written to disk) until the transaction commits.
This ensures that we do not leave the database in an intermediate state because if the transaction
does not finish, then none of its changes are actually written to disk and saved. The problem with
this policy is that it handcuffs how we can use memory. We have to keep every modified page in
memory until a transaction completes. We would much rather have a steal policy, which allows
modified pages to be written to disk before a transaction finishes. This will complicate enforcing
atomicity, but we will fix this problem by undoing bad operations during recovery.

"When a machine crashes, the bits in memory are ”erased,” which is why memory is not persistent and we have
to rely on persistent storage devices such as disk to guarantee durability.

CS 186, Fall 2020, Course Notes 1 Brian DeLeonardis

CS 186
Fall 2020 Recovery

4 Steal, No-Force

To review, we chose to use two policies (steal, no force) that make it difficult to guarantee atomicity
and durability, but get us the best performance. The rest of this note will cover how to ensure
atomicity and durability while using a steal, no force policy.

5 Write Ahead Logging

To solve these complications we will use logging. A log is a sequence of log records that describe
the operations that the database has done.

5.1 Update Log Record
Each write operation (SQL insert/delete/update) will get its own log UPDATE record.

An UPDATE log record looks like this:
<XID, pagelD, offset , length, old_data, new_data>
The fields are:

e XID: transaction ID - tells us which transaction did this operation

e pagelD: what page has been modified

e offset: where on the page the data started changing (typically in bytes)
e length: how much data was changed (typically in bytes)

e old_data: what the data was originally (used for undo operations)

e new_data: what the data has been updated to (used for redo operations)

5.2 Other Log Records

There are a few other record types we will use in our log. We will add fields to these log records
throughout the note as the need for these fields becomes apparent.

e COMMIT: signifies that a transaction is starting the commit process
e ABORT: signifies that a transaction is starting the aborting process

e END: signifies that a transaction is finished (usually means that it finsihed committing or
aborting)

CS 186, Fall 2020, Course Notes 2 Brian DeLeonardis

CS 186
Fall 2020 Recovery

5.3 WAL Requirements

Just like regular data pages, log pages need to be operated on in memory, but need to be written to
disk to be stored permanently. Write Ahead Logging (WAL) imposes requirements for when
we must write the logs to disk. The two rules are as follows:

1. Log records must be written to disk before the corresponding data page gets written to disk.
This is how we will achieve atomicity. The intuition for this is that if a data page is written
first and then the database crashes we have no way of undoing the operation because we don’t
know what operation happened!

2. All log records must be written to disk when a transaction commits. This is how we will
achieve durability. The intuition is that we need to persistently track what operations a
committed transaction has performed. Otherwise, we would have no idea what operations
we need to redo. By writing all the logs to disk, we know exactly which operations we need
to redo in the event that the database crashes before the modified data pages are written to
disk!

6 WAL Implementation

To implement write ahead logging we’re going to add a field to our log records called the LSIN,
which stands for Log Sequence Number. The LSN is a unique increasing number that helps signify
the order of the operations (if you see a log record with LSN = 20 then that operation happened
after a record with LSN = 10). In this class the LSNs will increase by 10 each time, but this is just
a convention. We will also add a prevLSN field to each log record which stores the last operation
from the same transaction (this will be useful for undoing a transaction).

The database will also keep track of the flushedLSN which is stored in RAM. The flushedLSN
keeps track of the LSN of last log record that has been flushed to disk. When a page is flushed, it
means that the page has been written to disk; it usually also implies that we evict the page from
memory because we don’t need it there anymore. The flushedLSN tells us that any log records
before it should not be written to disk because they are already there. Log pages are usually ap-
pended to the previous log page on disk, so writing the same logs multiple times would mean we
are storing duplicate data which would also mess up the continuity of the log.

We will also add a piece of metadata to each data page called the pageLSN. The pageLSN

stores the LSN of the operation that last modified the page. We will use this to help tell us what
operations actually made it to disk and what operations must be redone.

CS 186, Fall 2020, Course Notes 3 Brian DeLeonardis

CS 186
Fall 2020 Recovery

7 Inequality Exercise
Before page ¢ is allowed to be flushed to disk, what inequality must hold?
pageLSN; __ flushedLSN

Answer: <, This comes from our first rule for WAL - we must flush the corresponding log records
before we can flush the data page to disk. A data page is only flushed to disk if the LSN of the
last operation to modify it is less than or equal to the flushedLSN. In other words, before page @
can be flushed to disk, the log records for all operations that have modified page ¢ must have been
flushed to disk.

8 Aborting a Transaction

Before getting into recovering from a crash, let’s figure out how a database can abort a transaction
that is in progress. We may want to abort a transaction because of deadlock, or a user may decide
to abort because the transaction is taking too long. Transactions can also be aborted to guarantee
the C for consistency in ACID if an operation violates some integrity constraint. Finally, a
transaction may need to be aborted due to a system crash! We need to ensure that none of the
operations are still persisted to disk once the abort process finishes.

8.1 Abort and CLR Log Records

The first thing we will do is write an ABORT record to the log to signify that we are starting the
process. Then we will start at the last operation in the log for that transaction. We will undo each
operation in the transaction and write a CLR record to the log for each undone operation. A
CLR (Compensation Log Record) is a new type of record signifying that we are undoing a specific
operation. It is essentially the same thing as an UPDATE record (it stores the previous state and
the new state), but it tells us that this write operation happened due to an abort.

9 Recovery Data Structures

We will keep two tables of state to make the recovery process a little bit easier. The first table is
called the transaction table and it stores information on the active transactions. The transaction
table has three fields:

e XID: transaction ID
e status: either running, committing, or aborting

e lastLSIN: the LSN of the most recent operation for this transaction

CS 186, Fall 2020, Course Notes 4 Brian DeLeonardis

CS 186
Fall 2020 Recovery

An example of the transaction table is here:

Transaction Table
| XD | status | lastLsN |
1 R 33
2 C 42
The other table we maintain is called the Dirty Page Table (DPT). The DPT keeps track of
what pages are dirty (recall from many modules ago that dirty means the page has been modified

in memory, but has not been flushed to disk yet). This information will be useful because it will tell
us what pages have operations that have not yet made it to disk. The DPT only has two columns:

e Page ID
e recLSN: the first operation to dirty the page
An example of the DPT is here:

Dirty Page Table

PagelD
46 11
63 24

One thing to note is that both of these tables are stored in memory; so when recovering from a
crash, you will have to use the log to reconstruct the tables. We will talk about a way to make this
easier (checkpointing) later in the note.

10 More Inequality Questions

1. Fill in the equality below to enforce the WAL rule that all the logs must be flushed to disk
before a transaction T can commit:

flushedLSN __lastLSNr

Answer: > If the flushedLLSN is is greater than the last operation of the transaction then
we know all of the logs for that transaction are on disk.

2. For a page P that is in the DPT, fill in the following inequality for what must always be true:
recLSNp __in memory pageLSNp

Answer: < If a page is in the dirty page table then it must be dirty, so the last update must
not have made it to disk. The recLSN is the first operation to dirty the page, so it must be
smaller than the last operation to modify that page.

CS 186, Fall 2020, Course Notes 5! Brian DeLeonardis

CS 186
Fall 2020 Recovery

recLSNp __ on disk pageLSNp

Answer: > If the page is dirty then the operation that dirtied the page (recLSN) must not
have made it to disk, so it must have came after the operation that did make it to disk for
that page.

11 ARIES Recovery Algorithm

We’ve covered a lot of background information on how the database writes to its log and how it
aborts transactions when it is running normally. Now let’s finally get into the reason for all this
logging - recovering from failures. When a database crashes, the only things it has access to are the
logs that made it to disk and the data pages on disk. From this information, it should restore itself
so that all committed transactions’ operations have persisted (durability) and all transactions that
didn’t finish before the crash are properly undone (atomicity). The recovery algorithm consists of
3 phases that execute in the following order:

1. Analysis Phase: reconstructs the Xact Table and the DPT
2. Redo Phase: repeats operations to ensure durability

3. Undo Phase: undoes operations from transactions that were running during the crash to
ensure atomicity

Let’s go through each phase in detail.

12 Analysis Phase

The entire purpose of the analysis phase is to rebuild what the Xact Table and the DPT looked
like at the time of the crash. To do this, we scan through all of the records in the log beginning
from the start. We modify our tables according to the following rules:

e On any record that is not an END record: add the transaction to the the Xact Table (if
necessary). Set the lastLSN of the transaction to the LSN of the record you are on

e If the record is a COMMIT or an ABORT record, change the status of the transaction in the
Xact Table accordingly

e If the record is an UPDATE record, if the page is not in the DPT add the page to the DPT
and set recLSN equal to the LSN

e If the record is an END record, remove the transaction from the Xact Table.

CS 186, Fall 2020, Course Notes 6 Brian DeLeonardis

CS 186
Fall 2020 Recovery

At the end of the analysis phase, for any transactions that were committing we will also write
the END record to the log and remove the transaction from the Xact Table. Additionally, any
transactions that were running at the time of the crash need to be aborted and the abort record
should be logged. Note that on several prior exam questions we have asked for the status of the
tables before this final pass (without actually saying so on the exam - it was just an assumption
from the semester). We promise to be explicit about what we are looking for in the future.

One problem with the analysis phase so far is that it requires the database to scan through the
entire log. In production databases this is not realistic as there could be thousands or millions
of records. To speed up the analysis phase, we will use checkpointing. Checkpointing writes
the contents of the Xact Table and the DPT to the log. This way, instead of starting from
the beginning of the log, we can start from the last checkpoint. Checkpointing actually writes
two records to the log, a < BEGIN_.CHECKPOINT > record that says when checkpointing
started and an < END_CHECKPOINT >record that says when we finished writing the tables
to the log. The tables written to the log can be the state of tables at any point between the
< BEGIN CHECKPOINT > and < END_CHECKPOINT >. This means we need to start
at the < BEGIN_ CHECKPOINT > because we're not sure if the records after it are actually
reflected in the tables that were written to the log.

CS 186, Fall 2020, Course Notes 7 Brian DeLeonardis

CS 186
Fall 2020 Recovery

13 Analysis Phase Example

Log Transaction Table

LSM Record prevLSM

10 T1 updates F3 rull Transaction Status lastl SM
0 T1 updates P1 10 T FURRiAG 20
30 T2 updates P2 rull T2 FURifg an
40 T3 updates P1 rull T3 running 40
50 Begin Checkpoint -

&0 T3 updates F3 40

-0 3 Aborts 60 Dirty Page Table

80 End Checkpoint - Page ID racLSN

90 CLR undo T3 LSN: 80 70 P 40

100 T1 updates P4 20 P3 10

110 T1 commits 100

120 T1 Ends 110

The database crashed and we are given the log above. The Xact Table and the DPT on the right
are the tables found in the < END_CHECKPOINT > record. Let’s go through the process.

First, we start at the record at LSN 60 because it is the record immediately after the begin
checkpoint record. This is an UPDATE record and T3 is already in the Xact Table, so we will
update the lastLSN to 60. The page it updates is already in the DPT, so we don’t have to do
anything with the DPT. The tables now look like this:

CS 186, Fall 2020, Course Notes 8 Brian DeLeonardis

CS 186

Fall 2020 Recovery
Transaction Status lastLSN PagelD recLSN
T1 Running 20 P1 40
T2 Running 30 P3 10
T3 Running 60

Now we go to the record at LSN 70. It is an ABORT record, so we need to change the status in
our Xact Table to Aborting and update the lastLSN.

Transaction Status lastLSN PagelD recLSN
T1 Running 20 P1 40

T2 Running 30 P3 10

T3 Aborting 70

There is nothing to do for the end checkpoint record, so we move onto the CLR (UNDO) at LSN
90. T3 is in the Xact Table so we update the lastLSN and the page it is modifying (P3) is already
in the DPT so we again do not have to modify the DPT.

Transaction Status lastLSN PagelD recLSN
T1 Running 20 P1 40

T2 Running 30 P3 10

T3 Aborting 90

At LSN 100 we have another update operation and T1 is already in the Xact Table so we will
update its lastLSN. The page this record is updating is not in the DPT, however, so we will add it
with a recLSN of 100 because this is the first operation to dirty the page.

Transaction Status lastLSN PagelD recLSN
T1 Running 100 P1 40

T2 Running 30 P3 10

T3 Aborting a0 P4 100

Next is LSN 110 which is a COMMIT record. We need to change T1’s status to committing and
update the lastLSN.

Transaction Status lastLSN PagelD recLSN
T1 Committing 110 P1 40

T2 Running 30 P3 10

T3 Aborting a0 P4 100

CS 186, Fall 2020, Course Notes 9 Brian DeLeonardis

CS 186
Fall 2020 Recovery

Finally, LSN 120 is an END record meaning that we need to remove T1 from our Xact Table. This
leaves us with a final answer of:

Transaction Status lastLSN PagelD recLSN
T2 Running 30 P1 40
T3 Aborting a0 P3 10

P4 100

Note that in this question we left out that final pass for ending committing transactions and
aborting running transactions because this has also been done on several exams. In reality, before
the Redo Phase starts, we would change T2’s status to Aborting.

14 Redo Phase

The next phase in recovery is the Redo Phase which ensures durability. We will repeat history in
order to reconstruct the state at the crash. We start at the smallest recLSN in the DPT because
that is the first operation that may not have made it to disk. We will redo all UPDATE and CLR
operations unless one of the following conditions is met:

e The page is not in the DPT. If the page is not in the DPT it implies that all changes (and
thus this one!) have already been flushed to disk.

e recLSN > LSN. This is because the first update that dirtied the page occurred after this
operation. This implies that the operation we are currently at has already made it to disk,
otherwise it would be the recLSN.

e pageL.SN (disk) > LSN. If the most recent update to the page that made it to disk occurred
after the current operation, then we know the current operation must have made it to disk.

CS 186, Fall 2020, Course Notes 10 Brian DeLeonardis

CS 186
Fall 2020 Recovery

15 Redo Example

Log '
LSN Record prevLSN Transaction Status lastLSN
T2 Running 30
10 T1 updates P3 nudl T3 .ﬁ.borling 90
20 T1 updates P1 10
30 T2 updates P2 null PagelD recLSN
Pl 40
40 T3 updates P1 il P3 10
Begin Checkpoint P4 100
80 T3 updates P3 40
70 T3 Aborts 60
80 End Checkpoint
a0 CLR undo T3 LSN: 60 70
100 T1 updates P4 20
110 T1 commits 100
120 T1 Ends 110

The log and final tables from the analysis example have been reproduced for your convenience. Now
let’s answer the following two questions:

1. Where should we start the recovery process?.
Answer: At LSN 10 because that is the smallest recLSN in the DPT.

2. What are the LSNs of the operations that get redone?
Answer:

e 10 - UPDATE that does not meet any of the conditions
e Not 20 - recLSN > LSN
e Not 30 - page not in DPT

e 40 - UPDATE that does not meet any of the conditions

CS 186, Fall 2020, Course Notes 11 Brian DeLeonardis

CS 186
Fall 2020 Recovery

e Not 50 - only redo UPDATEs and CLRs

60 - UPDATE that does not meet any of the conditions
e Not 70 - only redo UPDATEs and CLRs

e Not 80 - only redo UPDATEs and CLRs

e 90 - CLR that does not meet any of the conditions

e 100 - UPDATE that does not meet any of the conditions
e Not 110 - only redo UPDATEs and CLRs

e Not 120 - only redo UPDATEs and CLRs

For a final answer of 10, 40, 60, 90, 100.

16 Undo Phase

The final phase in the recovery process is the undo phase which ensures atomicity. The undo phase
will start at the end of the log and works its way towards the start of the log. It undoes every
UPDATE (only UPDATESs!) for each transaction that was active (either running or aborting) at
the time of the crash so that we do not leave the database in an intermediate state. It will not
undo an UPDATE if it has already been undone (and thus a CLR record is already in the log for
that UPDATE).

For every UPDATE the undo phase undoes, it will write a corresponding CLR record to the log.
CLR records have one additional field that we have not yet introduced called the undoNextLSN.
The undoNextLSN stores the LSN of the next operation to be undone for that transaction (it comes
from the prevLSN of the operation that you are undoing). Once you have undone all the operations
for a transaction, write the END record for that transaction to the log.

Appendix 1 explains how this is implemented efficiently.

CS 186, Fall 2020, Course Notes 12 Brian DeLeonardis

CS 186
Fall 2020 Recovery

17 Undo Example

Log '
LSN Record prevLSN Transaction Status lastLSN
T2 Running 30
10 T1 updates P3 nudl T3 .Ab-:]rling 90
20 T1 updates P1 10
30 T2 updates P2 null PagelD recLSN
Pl 40
40 T3 updates P1 il P3 10
50 Begin Checkpoint P4 100
80 T3 updates P3 40
70 T3 Aborts 60
80 End Checkpoint
80 CLR undo T3 LSN: 60 70
100 T1 updates P4 20
110 T1 commits 100
120 T1 Ends 110

Write down all of the log records that will be written during the undo phase.

Answer: First recognize that the log provided is missing one record from the analysis phase.
Remember that at the very end of the analysis phase we need to write log entries for any aborting
transactions. Therefore, there should be an ABORT record at LSN 130 that aborts T2. It will have
a prevLSN of 30 because that is the last operation that T2 did before this ABORT operation. We
include this record in the final answer for completeness, but note that it is not technically written
during the Undo Phase, it is written at the end of the analysis phase.

We now move on to undoing the operations for T2 and T3. The most recent update for T3
occurs at LSN 60, but notice that there is already a CLR for that operation in the log (LSN 90).

Because that operation is undone, we do not need undo it again.

The next operation is the UPDATE at LSN 40. This update is not undone anywhere else in

CS 186, Fall 2020, Course Notes 13 Brian DeLeonardis

CS 186
Fall 2020 Recovery

the log so we do need to undo it and write the corresponding CLR record. The prevLLSN will be 90
because that CLR log record is the last operation for T3. The undoNextLLSN will be null because
there are no other operations in T3 to undo (see final answer below for the full syntax). Because
there are no more actions to undo for T3, we must also write the END record for that transaction.

The next operation we need to undo is the update at LSN 30 for T2. The prevLSN for this
record will be 130 because of the ABORT record we wrote before. The undoNextLSN will be null
again because there are no other operations for T2 in the log. We will also need to write the END
record for T2 because that was last operation we needed to undo. Here is the final answer:

LSN Record prevLSN undoNextLSN
130 ABORTT2 30

140 CLR Undo T3: LSN 40 a0 null

150 END T3 140

160 CLR Undo T2t LSN 30 130 null

170 END T2 160

18 Conclusion

In this note we covered how databases can guarantee that they will recover from failure even while
using a steal, no-force policy. We covered how the database uses Write Ahead Logging policies to
log all operations when it is running correctly. We finally covered how the database uses the log in
a 3 step process (analysis, redo, undo) to recover from failure and restore the database to a correct
state.

CS 186, Fall 2020, Course Notes 14 Brian DeLeonardis

CS 186
Fall 2020 Recovery

19 Appendix 1: Undo Details

This explanation will rely on the pseudocode from lecture:
toUndo = {lastLSNs of all Xacts in the Xact Table}
while !toUndo.empty():
thisLR = toUndo.find and remove largest LSN()

if thisLR.type == CLR:
if thisSLR undoNextLSN != NULL:
toUndo.insert(thisLR .undonextL.SN)
else: // thisLR undonextLSN = NULL
write an End record for thisLR xid in the log
else:
if thisLR type == UPDATE:
write a CLR for the undo in the log
undo the update in the database
if thisLR prevLSN !'= NULL.:
toUndo.insert(thisLR.prevLSN)
elif thisLR prevLSN == NULL.:
write an END record for thisLR.xid

The pseudocode uses toUndo which is a max-heap that stores the LSNs of operations that we
potentially need to undo. During the undo phase, the only transactions we want to undo are the
ones that were still active at the time of the crash. Therefore, we start by adding the lastLSN of all
the transactions in the Xact Table (recall that only transactions that are in the Xact Table could
have been active at the time of the crash).

We then iterate until the toUndo heap is empty. When toUndo is empty it implies that we have
undone everything that we need to. On each iteration, we pop off the record with the largest LSN
in the heap. If the record is a CLR record we will add the undoNextLSN to the toUndo heap. The
whole purpose of this field is to tell us what record needs to be undone next, so it makes sense to
use this during the UNDO process. For any other record, however, we don’t have this field so we
will need to add the prevLSN to toUndo instead. If the prevLSN field is null (or the undoNextLSN
in the case of a CLR), it means we are done with the transaction so we can just write the END

CS 186, Fall 2020, Course Notes 15 Brian DeLeonardis

CS 186
Fall 2020 Recovery

record to the log and we don’t have to add anything to toUndo. Remember that UPDATE records
are the only records that get undone, so we need the special case for them to write the CLR record
to the log and to actually undo the update.

This implementation has a few nice properties. The first is that we always go backwards in the
log, we never jump around. This is because the prevLSN/undoNextLSN is always smaller than
the LSN of the record and because we always remove the largest LSN from the heap. This is a
nice property because it means we will be doing sequential IOs rather than more costly random IOs.

The other nice property is that this implementation allows us to avoid undoing an UPDATE if
its already been undone. We have this property because if an UPDATE has been undone, the
correspoding CLR will occur after it in the log. Because we go backwards, we will hit the CLR be-
fore the UPDATE. We then add the undoNextLLSN to toUndo which lets us skip over that original
update. This is because undoNextLSN must point to an UPDATE operation before the UPDATE
that the CLR undoes, so the next log entry we will read from that transaction will occur before the

UPDATE we want to avoid. Because we never go forward during UNDO, it means we will never
actually hit that UPDATE.

20 Appendix 2: LSN list

There are a lot of different LSNs, so here is a list of what each one is:
e LSN: stored in each log record. Unique, increasing, ordered identifier for each log record
e flushedLSN: stored in memory, keeps track of the most recent log record written to disk

e pageL.SN: LSN of the last operation to update the page (in memory page may have a different
pageL.SN than the on disk page)

e prevLSN: stored in each log record, the LSN of the previous record written by the current
record’s transaction

e lastLSN: stored in the Xact Table, the LSN of the most recent log record written by the
transaction

e recLSN: stored in the DPT, the log record that first dirtied the page since the last checkpoint

e undoNextLSN: stored in CLR records, the LSN of the next operation we need to undo for
the current record’s transaction

CS 186, Fall 2020, Course Notes 16 Brian DeLeonardis

