
CS 186
Fall 2020 Distributed Transactions
1 Introduction

For much of this semester, we assumed that transactions ran on databases where all of the data
existed on one node (machine). This is often the case for databases with lighter workloads, but
as demand increases, databases scale out to improve performance by using a Shared Nothing
architecture. Each node receives a partition of the data set that is distributed based on a range
or hash key and is connected to other nodes through a network. Distributed Transactions are
needed for executing queries in distributed databases as a transaction may need to perform reads
and writes on data that exist on different nodes.

2 Distributed Locking

Since every node contains data that is independent of any other node’s data, every node can main-
tain its own local lock table. Coarser grained locks for entire tables or the database can either
be given to all nodes containing a partition or be centralized at a predetermined node. This design
makes locking simple as 2 phase locking is performed at every node using local locks in order to
guarantee serializability between different transactions.

When dealing with locking, deadlock is always a possibility. To determine whether deadlock has
occurred in a distributed database, the waits-for graphs for each node must be unioned to find
cycles as transactions can be blocked by other transactions executing on different nodes.

3 Two Phase Commit (2 PC)

In a distributed database, consensus is the idea that all nodes agree on one course of
action. Consensus is implemented through Two Phase Commit and enforces the property that all

CS 186, Fall 2020, Course Notes 1



CS 186
Fall 2020 Distributed Transactions
nodes maintain the same view of the data. It provides this guarantee by ensuring that a distributed
transaction either commits or aborts on all nodes involved. If consensus is not enforced, some nodes
may commit the transaction while others abort, causing nodes to have views of data at different
points in time.

Every distributed transaction is assigned a coordinator node that is responsible for maintaining
consensus among all participant nodes involved in the transaction. When the transaction is ready
to commit, the coordinator initiates Two Phase Commit.

2 PC’s first phase is the preparation phase:

1. Coordinator sends prepare message to participants to tell participants to either prepare for
commit or abort

2. Participants generate a prepare or abort record and flush record to disk

3. Participants send yes message to coordinator if prepare record is flushed or a no message if
abort record is flushed

4. Coordinator generates a commit record if unanimous yes votes or an abort record
otherwise and flushes record to disk

2 PC’s second phase is the commit/abort phase:

1. Coordinator broadcasts (sends message to every node in the db) result of the commit/abort
vote based on flushed record

2. Participates generate a commit or abort record based on the received vote message and flush
record to disk

3. Participants send an ACK (acknowledgement) message to the coordinator

4. Coordinator generates an end record once all ACKs are received and flushes the record some-
time in the future

CS 186, Fall 2020, Course Notes 2



CS 186
Fall 2020 Distributed Transactions

4 Distributed Recovery

It is also important that the Two-Phase Commit protocol maintains consensus among all nodes
even in the presence of node failures. In other words – suppose a node were to fail at an
arbitrary point in the protocol. When this node comes back online, it should still end up making
the same decision as all the other nodes in the database.

How do we accomplish this? Luckily, the 2PC protocol tells us to log the prepare, commit, and
abort records. This means that between looking at our own log, and talking to the coordinator
node, we will have all the information needed to accomplish recovery correctly.

Let’s look at the specifics. We will analyze what happens for a failure at each possible point
in the protocol, for either the participant or the coordinator.

Note that in some cases, we can determine what recovery decisions to make just by looking at
our own log. In other cases, however, we might also have to talk to the coordinator; we wrap this
logic in a separate process called the recovery process.

The possible failures, in chronological order:

• Participant is recovering, and sees no prepare record.

– This probably means that the participant has not even started 2PC yet – and if it has,
it hasn’t yet sent out any vote messages (since those happen after flushing prepare to
disk).

– Since it has not sent out any vote messages, it is safe to abort the transaction.

CS 186, Fall 2020, Course Notes 3



CS 186
Fall 2020 Distributed Transactions

• Participant is recovering, and sees a prepare record.

– This situation is trickier. Looking at the graph above, a lot of things could have happened
between logging the prepare record and crashing – for instance, we don’t even know if
we managed to send out our YES vote!

– Specifically, we don’t know whether or not the coordinator made a commit decision. So
the recovery process must ask the coordinator whether a commit happened
(”Did the coordinator log a commit?”).

– The coordinator will respond with the commit/abort decision, and the participant
resumes 2PC from phase 2.

• Coordinator is recovering, and sees a commit record.

– We’d like to commit, but we don’t know if we managed to tell the participants.

– So, just rerun phase 2 (send out commit messages).

• Participant is recovering, and sees a commit record.

– We did all our work for this commit, but the coordinator might still be waiting for our
ACK, so send ACK to coordinator.

• Coordinator is recovering, and sees an end record.

– This means that everybody already finished the transaction and there is no recovery to
do.

The list above only discusses commit records. What about abort records?

We could handle them the same way as commit records (e.g. tell participants, send acks). This
works fine, but is it really necessary? What if nodes just didn’t bother recovering aborted transac-
tions?

It turns out this works if everybody understands that no log records means abort. This
optimization is called presumed abort, and it means that abort records never have to be
flushed – not in phase 1 or phase 2, not by the participant or the coordinator.

This results in the protocol looking like this:

CS 186, Fall 2020, Course Notes 4



CS 186
Fall 2020 Distributed Transactions

And this is how we would recover from failures in aborted transactions, with and without presumed
abort:

• Participant is recovering, and sees a phase 1 abort record.

– Without presumed abort: Send “no” vote to coordinator.

– With presumed abort: Do nothing! (Coordinator will already presume abort anyway.)

• Coordinator is recovering, and sees an abort record.

– Without presumed abort: Rerun phase 2 (tell participants about abort decision).

– With presumed abort: Do nothing! (Participants who don’t know the decision will just
ask later.)

• Participant is recovering, and sees a phase 2 abort record.

– Without presumed abort: Send back ACK to coordinator.

– With presumed abort: Do nothing! (the participant doesn’t need to do anything after
writing a phase 2 abort record).

To wrap everything up, here are some subtleties we mentioned that you should be explicitly be
aware of:

• The 2PC recovery decision is commit if and only if the coordinator has logged a
commit record.

• Since 2PC requires unanimous agreement, it will only make progress if all nodes are alive.
This is true for the recovery protocol as well – for recovery to finish, all failed nodes must
eventually come back alive. Protocols that continue operating despite extended failures are
out of the scope of this course, but a good example is “Paxos Commit”.

CS 186, Fall 2020, Course Notes 5



CS 186
Fall 2020 Distributed Transactions
5 Practice Questions

1. Suppose that there are some transactions happening concurrently. If no two concurrent
transactions ever operate on rows that are being stored in the same node, can a deadlock still
happen?

2. Suppose a participant receives a prepare message for a transaction and replies VOTE-YES.
Suppose that they were running a wound-wait deadlock avoidance policy, and a transaction
comes in with higher priority. Will the new transaction abort the prepared transaction?

3. True or false - if we are recovering and see a PREPARE record, it means we must have sent out
a YES vote.

4. How many messages and log flushes does the presumed abort optimization skip if the trans-
action commits? What about if it aborts due to the participants aborting?

CS 186, Fall 2020, Course Notes 6



CS 186
Fall 2020 Distributed Transactions
6 Solutions

1. You may be inclined to say no, since a transaction does not seem like it will ever wait on the
locks of another transaction in this scenario. But remember that in addition to each node
maintaining its own local lock table, coarser grained locks, such as locks for tables or
the entire database, can still be shared between nodes, and the transactions may still
conflict via these coarser locks.

2. No - transactions that are prepared must be ready to commit if the coordinator tells them
to, so they cannot be aborted by anyone other than the coordinator.

3. False! We could have crashed between logging PREPARE and sending VOTE-YES.

4. If the transaction commits, no messages or log flushes are skip - the messages sent and records
logged are the same as the protocol without presumed abort.

If the participants abort, they do not flush any log records (skipping up to two flushes) and
only have to send one message (they don’t have to send the ACK). The coordinator also does
not have to flush any log records (skipping one flush), but does not skip any messages (it still
sends the messages it would without presumed abort).

CS 186, Fall 2020, Course Notes 7


