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1 Introduction
Most of the semester has focused on the properties and implementation of relational database
management systems, but here we will take a detour to explore a relatively new1 class of database
that has come to be called NoSQL. NoSQL databases deviate from the set of database design
principles that we have studied in order to achieve the high scale and elasticity needed for modern
“Web 2.0” applications. In this document we will explore the motivation and history of NoSQL
databases, review the design and properties of several types of NoSQL databases, compare the
NoSQL data model with the relational data model, and conclude with a description of MongoDB,
a popular and representative NoSQL database.

2 Motivation and History
2.1 OLTP and OLAP

In order to understand the emergence and properties of NoSQL, we must first describe two broad
classes of workloads that can be subjected to a database.

Online Transaction Processing (OLTP) is a class of workloads characterized by high num-
bers of transactions executed by large numbers of users. This kind of workload is common to
“frontend” applications such as social networks and online stores. Queries are typically simple
lookups (e.g., “find user by ID”, “get items in shopping cart”) and rarely include joins. OLTP
workloads also involve high numbers of updates (e.g., “post tweet”, “add item to shopping cart”).
Because of the need for consistency in these business-critical workloads, the queries, inserts and
updates are performed as transactions.

Online Analytical Processing is a class of read-only workloads characterized by queries that
typically touch a large amount of data. OLAP queries typically involve large numbers of joins
and aggregations in order to support decision making (e.g., “sum revenues by store, region, clerk,
product, date”).

In many cases, OLTP and OLAP workloads are served by separate databases. Data must
be migrated from OLTP systems to OLAP systems every so often via a process called extract-
transform-load (ETL).

2.2 NoSQL: Scaling Databases for Web 2.0

In the early 2000s, web applications began to incorporate more user-generated content and inter-
actions between users (called “Web 2.0”). Databases needed to handle the very large scale OLTP
workload consisting of the tweets, posts, pokes, photos, videos, likes and upvotes being inserted and
queried by millions or tens of millions of users simultaneously. Database designers began exploring
how to meet this required scale by relaxing the guarantees and reducing the functionality provided

1and also old, as we will see.
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Property OLTP OLAP

Main read pattern Small number of records per query, fetched
by key

Aggregate over large number of records

Main write pattern Random-access, low-latency writes from
user input

Bulk import or event stream

Primarily used by End user/customer, via web application Internal analysis, for decision support
What data represents Latest state of data (current point in time) History of events that happend over time
Dataset size Gigabytes to terabytes Terabytes to petabytes

Table 1: Table from Designing Data-Intensive Applications by Martin Kleppmann comparing char-
acteristics of OLTP and OLAP.
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Figure 1: A “single-tier” architecture: one server contains both the database (file) and the appli-
cation

by relational databases. The resulting databases, termed NoSQL, exhibit a simpler data model
with restricted updates but can handle a higher volume of simple updates and queries.

The natural question to ask is: How does simplifying the data model and reducing the func-
tionality of the database allow NoSQL to scale better than traditional relational databases? More
specifically, why is it hard to scale relational databases? We can illustrate the answers to these
questions through the history of techniques for scaling relational databases.

One-tier architecture (Figure 1): In the beginning, before clusters of computers were common
place,2 a database and its application code ran on a shared, single machine. If your application
needed to scale — e.g., more storage, faster transaction processing — you simply bought a more
powerful machine. The advantage of this setup is that enforcing consistency for OLTP workloads
is relatively straightforward. There is a single database (often stored in a single file like SQLite),
and because there is only a single application using the database at a time, there was little need
for concurrency control to maintain consistency, which drastically simplified the implementation.
However, this architecture is only appropriate for a few scenarios, namely those with a single

2Seymour Cray famously asked “”If you were plowing a field, which would you rather use? Two strong oxen or
1024 chickens?”
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Figure 2: A “two-tier” architecture: the database resides on a single server and multiple client
applications connect to it

application that needs to interact with the database.
Two-tier architecture (Figure 2): The need to support multiple simultaneous applications

led to the emergence of client-server architecture. In this setup, there is a single database server
(typically on a powerful server or cloud service) that is accessed by multiple applications. Each
application (referred to as a client) connects to the database using an application programming
interface like JDBC or ODBC. Because the actions of these multiple applications may conflict with
one another, transactions are imperative to maintain consistency of the database. This architecture
permits a larger number of applications to access the same database, and enables higher transaction
throughput (the number of transactions the system is able to serve per unit time). However, there
is still just one database server and one application server (per application).

Three-tier architecture (Figure 3): As one might imagine, one application server is not
sufficient to meet the load of modern, global-scale web applications like modern social networks
and online stores. In the two-tier architecture the application server is considered the client, so
there are maybe 10s of clients connecting to the database. For modern web applications the user’s
browser is considered the client, meaning there are 10s to 100s of millions of clients that need to be
served. Application servers can be replicated in order to meet this scale. Application servers are
relatively easy to replicate because they do not share state (i.e., the only state they need to keep
is which clients are connected to them), so it is possible to add 100s or 1000s of new application
nodes in order to meet demand. All common state is handled by a database “backend” which
communicates with the application servers. This places a high OLTP load on the database, which
quickly outstrips the capabilities of a single database server.

Now we must examine how to scale the database beyond a single server while still providing
the consistency required by the OLTP workloads.
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Figure 3: A “three-tier” architecture: database server(s) are distinct from the application frontend
servers, which serve user traffic directly. The frontend can be scaled by adding more application
servers.

3 Methods for Scaling Databases
3.1 Partitioning

The first mechanism we can leverage for scaling a database is partitioning. We have studied
partitioning (also called sharding) before when discussing parallel query processing. In order to
meet the performance needs of a modern, web-scale application, partitioning becomes extremely
useful, as the database can be partitioned into segments of data that are spread out over multiple
machines. Performance can increase for two reasons: 1) queries can be executed in parallel on
multiple machines if they touch different parts of the database and 2) partitioning the database
may allow each partition to fit into memory, which can reduce the disk I/O cost for executing
queries. Partitioning can be effective for write-heavy workloads, as query write operations such
as inserts and updates, will likely involve writing to just a single machine. However, read-heavy
workloads may suffer when queries access data spanning multiple machines (e.g. consider a join on
relations partitioned across many machines, requiring costly network transfer), which can decrease
performance in comparison to the single database server model.
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3.2 Replication

Replication is motivated not only by the need to scale the database, but also for the database
(and by association the application dependent on accessing the database) to be resilient to failures
and extensive down-time where the machine is unresponsive. In all of the 3 architectures studied
in Section 2, the database server is a single point of failure, a component that upon failure stops
the entire system from functioning. With replication, the data is replicated on multiple machines.
This is effective for read-heavy workloads, as queries that read the same data can be executed
in parallel on different replicas. However, as the number of replicas increases, writes become in-
creasingly expensive, as queries that update data must now write to each replica of the data to
keep them in sync. For each partition, there is a main/primary (formerly called master) copy and
duplicates/replicas that are kept in sync.

Partitioning and replication are often used together in real systems to leverage the performance
benefits and to make the system more fault-tolerant. As the system scales with more replicas and
more partitions, it becomes important to ask questions about how the system will respond when
machines begin to fail and the network makes no guarantees about ordering or even the successful
delivery of messages.

3.3 CAP Theorem

When designing distributed systems, there are three desirable properties that we define here:

• Consistency: The distributed systems version of consistency is a different concept from the
consistency found in ACID. The C in ACID refers to maintaining various integrity constraints
of a relational database, such as ensuring that a table’s primary key constraint is satisfied.
On the other hand, consistency in the distributed systems context refers to ensuring that two
clients making simultaneous requests to the database should get the same view of the data.
In other words, even if each client connects to a different replica, the data that they receive
should be the same.

• Availability: For a system to be available, every request must receive a response that is not
an error, unless the user input is inherently erroneous.

• Partition Tolerance: A partition tolerant system must continue to operate despite messages
between machines being dropped or delayed by the network, or disconnected from the network
altogether.

The CAP theorem (also known as Brewer’s Theorem)3 proves that it is impossible for a dis-
tributed system to simultaneously provide more than two of the three (CAP) properties defined

3The CAP theorem was first presented as a conjecture by Eric Brewer in 1998 and later formally proved by Seth
Gilbert and Nancy Lynch in 2002.
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above.4 In reality, it is almost impossible to design a system that is completely safe from network
failures, and thus most systems must be designed with partition tolerance in mind. The tradeoff
then comes between choosing consistency or availability during these periods where the network is
partitioned. It is important to note that if there is no a network failure, it is possible to provide
both consistency and availability.

A system that chooses consistency over availability will return an error or time-out if it cannot
ensure that the data view it has access to contains the most recent updates. On the other hand,
a system that chooses availability over consistency will always respond with the data view it has
access to, even if it is unable to ensure that it contains the most recent updates. In a system that
chooses availability over consistency, it is possible that two clients that send a simultaneous read
request to different replica machines will receive different values in the event of a network failure
that prevents messages between those two replicas. As a concrete example contrasting the two
system design choices outlined above, consider a client reading from a replica that cannot access
the main copy/replica (due to a network failure). The client will either receive an error (prioritizing
consistency) or a stale copy (prioritizing availability).

In fact many such systems provide eventual consistency instead of consistency, in order to trade
off availability and consistency. Eventual consistency guarantees that eventually all replicas will
become consistent once updates have propagated throughout the system. Eventual consistency
allows for better performance, as write operations no longer have to ensure that the update has
been successful on all replicas. Instead, the update can be propagated to the rest of the replicas
asynchronously. This does lead to a concern about how simultaneous updates at different replicas
are resolved, but this is beyond the scope of this class.

So given the difficulty in scaling relational systems, application designers started looking into
alternate data models, and that’s where NoSQL comes in.

4 NoSQL Data Models
NoSQL data stores encompass a number of different data models that differ from the relational
model.

4.1 Key-Value Stores

The key-value store (KVS) data model is extremely simple and consists only of (key, value) pairs to
allow for flexibility. The key is typically a string or integer that uniquely identifies the record and
the value can be chosen from a variety of field types. It is typical for a KVS to only allow for byte-
array values, which means the application has the responsibility of serializing/deserializing various
data types into a byte-array. Due to the flexibility of the KVS data model, a KVS cannot perform
operations on the values, and instead provides just two operations: get(key) and put(key, value).

4For a concise, illustrated proof of the CAP theorem written by a former TA, refer to https://mwhittaker.

github.io/blog/an_illustrated_proof_of_the_cap_theorem/
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Examples of popular key-value stores used in industry include AWS’s DynamoDB, Facebook’s
RocksDB, and Memcached.

4.2 Wide-Column Stores

Wide-column stores (or extensible record stores) offer a data model compromise between the struc-
tured relational model and the complete lack of structure in a key-value store. Wide-column stores
store data in tables, rows, and dynamic columns. Unlike a relational database, wide-column stores
do not require each row in a table to have the same columns. Another way to reason about wide-
column stores is as a 2-dimensional key-value store, where the first key is a row identifier used to
find a particular row, and the second key is used to extract the value of a particular column. The
data model has two options:

• key = rowID, value = record

• key = (rowID, columnID), value = field

The only operations provided are the same as a KVS: get(key) (or get(key, [columns]), which can
be thought of as performing a projection on the record) and put(key, value). A couple of the most
popular wide-column stores used in industry include Apache Cassandra and Apache HBase (which
is based on Google’s BigTable).

4.3 Document Stores

In contrast with key-value stores, which are the least-structured NoSQL data model, document
stores are among the most structured. The “value” in key-value stores is often a string or byte-
array (called unstructured data): this is maximally flexible (you can store anything in a byte array),
but often it can be helpful to adopt some convention. This is referred to as semi-structured data.
Key-value stores whose values adhere to a semi-structured data format such as JSON, XML or
Protocol Buffers are termed document stores; the values are called documents. Relational
databases store tuples in tables; document databases store documents in collections.

5 Document vs Relational Data Models
Recall that the relational data model organizes length-n tuples into unordered collections called
tables, which are described by a set of attributes; each attribute has a name and a datatype.
Document data models, on the other hand, can express more complex data structures such as map-
s/dictionaries, list/arrays and primitive data types, which may be arranged into nested structures.
Structured data formats used in document stores include (but are not limited to) Protocol Buffers5,
XML6 and JSON.7

5Also called “protobuf”: https://developers.google.com/protocol-buffers
6Extensible Markup Language: https://www.w3.org/XML/
7JavaScript Object Notation: https://www.json.org
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(a) (b)

Figure 4: A JSON and XML representation of the same object.

One should think of these data formats as just that — formats. They are all ways of serializing
the data structures used in applications into a form that can be transmitted over a network and
used by client-side code to implement application logic. XML and Java “grew up together” in
the early days of the public internet as the dominant data serialization protocol and application
programming language, respectively. It was very easy to convert Java objects into XML documents
that could be sent over a network and turned back into Java objects on the other side. JSON has
grown in popularity along with the JavaScript programming language over the course of the past
two decades, and is the predominant data format used by web applications. Protocol Buffers were
developed by Google to meet their internal needs for a data serialization format that was smaller
and more efficient than XML.

These data formats were originally developed as ways of exchanging data, but are increasingly
being used as the data model for document databases. Microsoft’s SQL server supports XML-
valued relations; Postgres supports XML and JSON as attribute types; Google’s Dremel supports
storing Protobuf; CouchBase, MongoDB, Snowflake and many others support JSON.

5.1 JSON Overview

JSON is a text format designed for human-readable and machine-readable interchange of semi-
structured data. Originally developed to support exchange of data between a web server and
Javascript running in a client’s browser, it is now used as a native representation within many
NoSQL databases. Due to its widespread adoption, we will focus on JSON in this class. JSON
supports the following types:
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Figure 5: The JSON document in Figure 4 represented as a tree

• Object: collection of key-value pairs. Keys must be strings. Values can be any JSON
type (i.e., atomic, object, or array). Objects should not contain duplicate keys. Objects are
denoted using “{” and “}” in a JSON document.

• Array: an ordered list of values. Values can be any JSON type (i.e. atomic, object, or array).
Arrays are denoted using “[” and “]” in a JSON document.

• Atomic: one of a number (a 64-bit float), string, boolean or null.

A JSON document consists of one of the above types, which may in turn include nested com-
ponents. For example, the JSON document in Figure 4 consists of an object with a single key
("books"); the value associated with this key is an array of objects. A JSON document can be
interpreted as a tree (Figure 5); this is due to the nested structure of JSON documents.

Another important characteristic of JSON is that it is self-describing — that is, the schema
elements are part of the data itself. This allows each document to have its own schema, even within
the same document database.

5.2 JSON vs Relational

Now we can more directly compare document data model (as typified by JSON) with the relational
data model.

• Flexibility: JSON is a very flexible data model that can easily represent complex structures,
including arbitrarily nested data. The relational model is less flexible; it requires keys and
joins to represent complex structures.
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• Schema Enforcement: JSON documents are self-describing; each document in a collection

can potentially have a unique structure. Under the relational model, the schema for a table
is fixed and all tuples in the table must adhere to the pre-defined schema.

• Representation: JSON is a text-based representation, appropriate for exchange over the
web. While it is not necessarily the most efficient representation, it can be easily parsed
and manipulated by many different applications and programming languages. In contrast,
relational data uses a binary representation which is specialized for a particular database
system implementation. It is designed for efficient storage and retrieval from disk — not for
sharing information. For instance, MySQL and Postgres each have their own binary data
format that are mutually incompatible.

Note that there are intermediate representations such as TSON (typed-JSON) and BSON
(binary-JSON) which can enforce schema restrictions or have binary representations that are
more efficient than standard JSON; we omit them for this discussion.

As always, there are tradeoffs to be made. We review two of them here.
First, relational databases trade flexibility for simplifying application code. Relational databases

are sometimes described as “enforcing schema on write”, and document databases are sometimes
described as “enforcing schema on read”. Applications querying a relational database will know
exactly the structure and data types of the rows that are returned; this can be determined through
examining the schemas of the tables being queried. However, applications querying a document
database will need to inspect the schema of each document in a collection, which pushes complexity
into the application logic. We will investigate this in more detail in Section 5.4 below.

Second, the document model is more suitable for data which is primarily accessed by a primary
key (like an email or user ID). For these kinds of lookups, the document model exhibits better
locality ; all the data related to the key of interest can be returned in a single query. This is
typically more efficient for a document database than for a relational database: information could
be stored in multiple tables and require several joins in order to retrieve the same information.

5.3 Converting Between JSON and Relational

Some relational databases such as Postgres and SQLite permit the storage and querying of JSON in
a relational context; a table attribute can have a type of JSON and elements of the JSON document
can be retrieved or queried through the use of special operators and functions. It is also possible to
transform JSON documents into a form that can be represented in the relational model, and vice
versa.

Transforming Relational to JSON: A single table with a set of attributes can be represented
in JSON as an object whose key is the name of the table and whose value is an array of objects.
Each object in the array corresponds to a row in the table: the object has the table attributes as
keys, and the tuple elements as values. A table with foreign keys into another table (a one-to-many
relationship) can be represented in JSON as a nested structure for which the linked rows in the
second table are embedded or “inlined” into the objects representing the row of the first table.
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Figure 6: A JSON document which is difficult to translate to a relational table

Many-to-many relationships in a relational schema are harder to represent without introducing
duplicate data. Consider a set of three relations, one of which has foreign keys into two other
primary-keyed tables (this is the relationship table). There are three options for representing this
setup using JSON. The first option is to represent each relation as a flat JSON array (where each
element is an object representing a row); this has no redundant data, but relies on the application
to join the tables to get related data. The second and third options key off of the one of the
primary-keyed tables and inlines the contents of the relationship table and the last table within
each object. In either of these cases, the elements of the last table will be duplicated for each linked
element of the first table. This redundancy means that the application does not need to perform
any joins to get the full record (because it is all stored in the same document), but also means that
updates to the document store will need to handle updating all duplicated rows.

Transforming JSON to Relational: Representing semi-structured data as a relation can
be tricky because of the potential variation in structure of the documents at hand. Consider the
document in Figure 6. This suggests a relational table person(name, phone, address, email),
but there are several issues. First, one of the objects in our JSON document has two phone numbers;
the schema would need to factor phone numbers out into another table, or suffer the inclusion of
duplicate data. Second, one of the objects has an email but another does not. The relational
schema can represent the absence of an email with a NULL value in the table, but what if future
documents contain additional attributes? The schema of the table would need to be changed,
which is a potentially expensive manual process. Lastly, the address fields of the two objects have
different structures: one contains a simple string and the other contains a nested object. There is
no obvious “best” way to represent these two structures in a relational database.

5.4 Querying Semi-Structured Data

Semi-structured data models have their own set of query languages, distinct from SQL. These query
languages must handle the variety of structures found in semi-structured data: repeated attributes,
different types for the same attributes, nested and heterogeneous collections, and so on. We studied
one such language in class (the MongoDB query language). See class lecture slides or the manual8

for more details.

8https://docs.mongodb.com/manual/tutorial/query-documents/
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